首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene activation and DNA binding by Drosophila Ubx and abd-A proteins   总被引:18,自引:0,他引:18  
M L Samson  L Jackson-Grusby  R Brent 《Cell》1989,57(6):1045-1052
The Ubx and abd-A gene products are required for proper development of thoracic and abdominal structures in Drosophila. We expressed LexA-Ubx and LexA-abdA fusion proteins in yeast. These proteins activated expression of target genes that carried either upstream LexA operators or upstream Ubx binding sites. Both proteins contain homeodomains. Experiments with mutant fusion proteins show that the homeodomain is not required for the proteins to form dimers or enter the nucleus, and that, when DNA binding is provided by the LexA moiety, the homeodomain is not required for gene activation. Our results suggest that the homeodomain is necessary for these proteins to bind Ubx sites, but that the homeodomain does not contact DNA exactly like bacterial helix-turn-helix proteins. Finally, our data suggest that gene activation by these proteins is a simple consequence of their binding to DNA, while negative gene regulation requires that these proteins act together with other Drosophila gene products.  相似文献   

2.
Tubulin is detected among the DNA-binding proteins when an extract from fibroblasts is chromatographed on DNA-cellulose. Further purification of the colchicine-binding activity shows that purified tubulin from fibroblasts does not bind to DNA. Depolymerized brain microtubule proteins show a high affinity for DNA. The fraction bound is composed of tubulin and microtubule-associated proteins. Experiments with fractionated microtubule proteins indicate that tubulin-free microtubule associated proteins bind to DNA, while tubulin free of microtubule-associated proteins does not. Microtubule-associated proteins bind better to eukaryotic than to phage DNA suggesting a specificity of the interaction.  相似文献   

3.
To identify synaptonemal complex (SC) proteins in Lilium longiflorum (lily), monoclonal antibodies were generated using mice immunized with isolated pachytene nuclei. While most of the resulting monoclonal antibodies recognized nucleolar or chromatin proteins, one monoclonal antibody (anti-LE) was found that binds to lateral elements. Anti-LE bound more to lateral elements of SCs digested with DNase than to lateral elements that had not been digested with DNase. The opposite pattern of labeling was observed using monoclonal antibodies to lily chromatin and nucleolar proteins. These results indicate that anti-LE is specifically recognizing lateral element proteins and not chromatin or nucleolar proteins surrounding the lateral elements. On immunoblots, anti-LE binds to three pachytene nuclear proteins (Mr 60000, 66000 and 70000), two tetrad (early microspore) nuclear proteins (Mr 60000 and 70000), and two root tip nuclear proteins (Mr 52000 and 60000). However, anti-LE does not bind to proteins from leaf nuclei. Of these four tissues, leaf is the only one that does not have actively dividing cells. This observation suggests that at least some SC proteins are related to nuclear proteins from mitotically active cells.  相似文献   

4.
Many of the targets of structural genomics will be proteins with little or no structural similarity to those currently in the database. Therefore, novel function prediction methods that do not rely on sequence or fold similarity to other known proteins are needed. We present an automated approach to predict nucleic-acid-binding (NA-binding) proteins, specifically DNA-binding proteins. The method is based on characterizing the structural and sequence properties of large, positively charged electrostatic patches on DNA-binding protein surfaces, which typically coincide with the DNA-binding-sites. Using an ensemble of features extracted from these electrostatic patches, we predict DNA-binding proteins with high accuracy. We show that our method does not rely on sequence or structure homology and is capable of predicting proteins of novel-binding motifs and protein structures solved in an unbound state. Our method can also distinguish NA-binding proteins from other proteins that have similar, large positive electrostatic patches on their surfaces, but that do not bind nucleic acids.  相似文献   

5.
After oxidative stress, proteins that are oxidatively modified are degraded by the 20S proteasome. However, several studies have documented an enhanced ubiquitination of yet unknown proteins. Because ubiquitination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However, we were able to confirm an increase in ubiquitinated proteins 16 h after oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide-treated cells, as well as from control cells and cells treated with lactacystin, an irreversible proteasome inhibitor, and identified some of these proteins by MALDI tandem mass spectrometry. As a result we obtained 24 different proteins that can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified, ubiquitinated proteins confirms the thesis that ubiquitination upon oxidative stress is not a random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins.  相似文献   

6.
7.
Intrinsically disordered proteins are very common in eukaryotes and thus understanding functional roles and factors which influence protein disorderness becomes very important. In this work, we ask whether global properties not directly related to the function of the proteins, like expression level and avoidance of aggregation, influence disorderness of proteins. We found that proteins expressed at higher levels tend to be less disordered, even within the same functional class. We also found that the correlation between expression level and evolutionary rate was significantly reduced for disordered proteins indicating the role of disorderness in preventing aggregation of highly expressed proteins, which are more susceptible to misfolding due to translational errors. We reconcile these seemingly opposing results based on the observation that the correlation between expression level and disorderness was significantly less for proteins involved in binding functions, suggesting that highly expressed proteins involved in binding functions utilize disordered regions to avoid aggregation. Our results show that disorderness is not just influenced by functional properties of proteins, but also by properties not directly related to their functions like expression level and avoidance of aggregation.  相似文献   

8.
Proteins in general consist not only of globular structural domains (SDs), but also of intrinsically disordered regions (IDRs), i.e. those that do not assume unique three-dimensional structures by themselves. Although IDRs are especially prevalent in eukaryotic proteins, the functions are mostly unknown. To elucidate the functions of IDRs, we first divided eukaryotic proteins into subcellular localizations, identified IDRs by the DICHOT system that accurately divides entire proteins into SDs and IDRs, and examined charge and hydropathy characteristics. On average, mitochondrial proteins have IDRs more positively charged than SDs. Comparison of mitochondrial proteins with orthologous prokaryotic proteins showed that mitochondrial proteins tend to have segments attached at both N and C termini, high fractions of which are IDRs. Segments added to the N-terminus of mitochondrial proteins contain not only signal sequences but also mature proteins and exhibit a positive charge gradient, with the magnitude increasing toward the N-terminus. This finding is consistent with the notion that positively charged residues are added to the N-terminus of proteobacterial proteins so that the extended proteins can be chromosomally encoded and efficiently transported to mitochondria after translation. By contrast, nuclear proteins generally have positively charged SDs and negatively charged IDRs. Among nuclear proteins, DNA-binding proteins have enhanced charge tendencies. We propose that SDs in nuclear proteins tend to be positively charged because of the need to bind to negatively charged nucleotides, while IDRs tend to be negatively charged to interact with other proteins or other regions of the same proteins to avoid premature proteasomal degradation.  相似文献   

9.
《Biophysical journal》2022,121(12):2290-2296
The matrix proteins (M) of many enveloped RNA viruses mediate virus assembly and budding. However, it remains poorly understood how M are involved in virus budding and how they interact with envelope proteins. Here, we show that the expression level of Nipah (NiV) M in particles produced by the host cells deviates from a gamma distribution and does not reflect that of the host cells, indicating assembly of the NiV-M in the process. Our data reveal that NiV-M affects the circularity of the particles while the NiV envelope proteins do not. The organization of NiV envelope proteins on the membrane of the particles is similar to those that do not express NiV-M, suggesting that NiV-M does not directly interact with the envelope proteins during assembly and budding.  相似文献   

10.
Mammalian mitochondrial small subunit ribosomal proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The proteins in six individual spots were subjected to in-gel tryptic digestion. Peptides were separated by capillary liquid chromatography, and the sequences of selected peptides were obtained by electrospray tandem mass spectrometry. The peptide sequences obtained were used to screen human expressed sequence tag data bases, and complete consensus cDNAs were assembled. Mammalian mitochondrial small subunit ribosomal proteins from six different classes of ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins correspond to Escherichia coli S10 and S14. Homologs of two human mitochondrial proteins not found in prokaryotes were observed in the genomes of Drosophila melanogaster and Caenorhabditis elegans. A homolog of one of these proteins was observed in D. melanogaster but not in C. elegans, while a homolog of the other was present in C. elegans but not in D. melanogaster. A homolog of one of the ribosomal proteins not found in prokaryotes was tentatively identified in the yeast genome. This latter protein is the first reported example of a ribosomal protein that is shared by mitochondrial ribosomes from lower and higher eukaryotes that does not have a homolog in prokaryotes.  相似文献   

11.
When yeast protoplasts that were producing repressible acid phosphatase (r-APase) were treated with tunicamycin (TM), three specific proteins of 59k, 57k, and 55k daltons were accumulated in the membrane fraction in addition to the usual membrane proteins and these proteins were not detected in the secreted fraction. These proteins were immunoprecipitated with anti r-APase antiserum. Their molecular sizes were almost the same as those endo-H treated r-APase. Therefore these proteins were considered to be nonglycosylated forms of r-APase proteins. These results proved that nonglycosylated forms of r-APase produced by TM-treatment were not secreted by yeast protoplasts.  相似文献   

12.
Bovine spermatozoa that have been exposed to seminal plasma possess more binding sites for heparin than sperm from the cauda epididymis that have not been exposed to accessory sex gland secretions. Seminal plasma exposure enables sperm, following incubation with heparin, to undergo zonae pellucidae-induced exocytosis of the acrosome. In this study, the regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa by heparin was investigated. Plasma membranes from sperm exposed to seminal plasma in vivo or in vitro contained a series of acidic 15-17 kDa proteins not found in cauda epididymal sperm. Western blots of membrane proteins indicated that these 15-17 kDa proteins bound [125I]-heparin. Heparin-binding proteins were isolated by heparin affinity chromatography from seminal plasma from vasectomized bulls. Gel electrophoresis indicated that the heparin-binding peaks contained 14-18 kDa proteins with isoelectric variation, a basic 24 kDa protein, and a 31 kDa protein. Western blots probed with [125I]-heparin confirmed the ability of each of these proteins to bind heparin. Each of these proteins, as well as control proteins, bound to epididymal sperm. The seminal plasma proteins were peripherally associated with sperm since they were removed by hypertonic medium and did not segregate into the detergent phase of Triton X-114. Seminal plasma heparin-binding proteins potentiated zonae pellucidae-induced acrosome reactions in epididymal sperm. However, seminal plasma proteins that did not bind to the heparin affinity column were unable to stimulate zonae-sensitivity. Control proteins, including lysozyme--which binds to both heparin and sperm, were ineffective at enhancing zonae-induced acrosome reactions. These data provide evidence for a positive regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa.  相似文献   

13.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   

14.
It has been shown that proteins encoded by linked genes have similar rates of evolution and that clusters of essential genes are found in regions with low recombination rates. We show here that proteins encoded by linked genes in two closely related bacterial species, namely Escherichia coli K12 and Salmonella typhimurium LT2, evolve more slowly when compared with proteins encoded by genes that are not linked as assessed by protein sequence similarity. The proteins encoded by the identified linked genes share an average sequence identity of 82.5% compared with a 46.5% identity of proteins encoded by genes that are not linked.  相似文献   

15.
MIF proteins are not glutathione transferase homologs.   总被引:2,自引:1,他引:1       下载免费PDF全文
Although macrophage migration inhibitory factor (MIF) proteins conjugate glutathione, sequence analysis does not support their homology to other glutathione transferases. Glutathione transferases are not detected with MIF proteins in searches of protein sequence databases, and MIF proteins do not share significant sequence similarity with glutathione transferases. Homology cannot be demonstrated by multiple sequence alignment or evolutionary tree construction; such methods assume that the proteins being analyzed are homologous.  相似文献   

16.
Precipitation of Saccharomyces cerevisiae ribosomes by ethanol under experimental conditions that do not release the ribosomal proteins can affect the activity of the particles. In the presence of 0.4 M NH4Cl and 50% ethanol only the most acidic proteins from yeast and rat liver ribosomes are released. At 1 M NH4Cl two more non-acidic proteins are lost from the ribosomes. The release of the acidic proteins causes a small inactivation of the polymerizing activity of the particles, additional to that caused by the precipitation itself. The elongation-factor-2-dependent GTP hydrolysis of the ribosomes is, however, more affected by the loss of acidic proteins. These proteins can stimulate the GTPase but not the polymerising activity when added back to the treated particles. Eukaryotic proteins cannot be substituted for bacterial acidic proteins L7 and L12. We have not detected immunological cross-reaction between acidic proteins from Escherichia coli and those from yeast, Artemia salina and rat liver or between acidic proteins from these eukaryotic ribosomes among themselves.  相似文献   

17.
It becomes increasingly clear that most proteins of living systems exist as components of various protein complexes rather than individual molecules. The use of various proteomic techniques significantly extended our knowledge not only about functioning of individual complexes but also formed a basis for systemic analysis of protein-protein interactions. In this study gel-filtration chromatography accompanied by mass spectrometry was used for the interactome analysis of human liver proteins. In six fractions (with average molecular masses of 45 kDa, 60 kDa, 85 kDa, 150 kDa, 250 kDa, and 440 kDa) 797 proteins were identified. In dependence of their distribution profiles in the fractions, these proteins could be subdivided into four groups: (1) single monomeric proteins that are not involved in formation of stable protein complexes; (2) proteins existing as homodimers or heterodimers with comparable partners; (3) proteins that are partially exist as monomers and partially as components of protein complexes; (4) proteins that do not exist in the monomolecular state, but also exist within protein complexes containing three or more subunits. Application of this approach to known isatin-binding proteins resulted in identification of proteins involved in formation of the homo- and heterodimers and mixed protein complexes.  相似文献   

18.
Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases   总被引:5,自引:1,他引:4  
The DExH/D protein family is the largest group of enzymes in eukaryotic RNA metabolism. DExH/D proteins are mainly known for their ability to unwind RNA duplexes in an ATP-dependent fashion. However, it has become clear in recent years that these DExH/D RNA helicases are also involved in the ATP-dependent remodeling of RNA–protein complexes. Here we review recent studies that highlight physiological roles of DExH/D proteins in the displacement of proteins from RNA. We further discuss work with simple RNA–protein complexes in vitro, which illuminates mechanisms by which DExH/D proteins remove proteins from RNA. Although we are only beginning to understand how DExH/D proteins remodel RNA–protein complexes, these studies have shown that an ‘RNA helicase’ does not per se require cofactors to displace proteins from RNA, that protein displacement does not necessarily involve RNA duplex unwinding, and that not all DExH/D proteins are able to disassemble the same range of ribonucleoproteins.  相似文献   

19.
20.
The expression of two stress-inducible protein families was examined in hamster fibroblast cells. These are the heat-shock and glucose-regulated proteins which have been shown to be highly inducible by heat and glucose-starvation, respectively. Our studies here demonstrate that the two sets of proteins can be induced simultaneously or separately. The enhanced synthesis of one set of proteins apparently does not affect the level of expression of the other set. We further show that pre-incubation of these fibroblast cells in calcium-free medium does not inhibit the synthesis of the 70 and 72-kilodalton heat-shock proteins at the elevated temperature. While extracellular calcium is apparently not involved in the activation of the heat-shock protein synthesis, its removal from the culture medium has a modest stimulative effect on the synthesis of the glucose-regulated proteins. Our results are consistent with the hypothesis that the expression of these two sets of proteins are regulated by separate control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号