首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the relationship between bile cholesterol and free cholesterol carried by high and low density lipoproteins (HDL and LDL), 10 male Wistar rats, 11 weeks old and fed with a standard diet were divided into 3 groups which received an intravenous infusion (jugular vein) of either LDL, HDL or liposomes. Liposomes were used for comparison because they are assimilated by hepatocytes, but are not recognized by specific receptors. HDL isolated from rat sera were labeled with [14C]cholesterol by molecular exchange and LDL were labeled by exchange with [14C]cholesterol incorporated into phosphatidyl choline/cholesterol liposomes. The peaks of radioactivity appeared in bile 30 min after the HDL or liposome injection and after 210 min for the LDL injection. The kinetic behavior of the cholesterol carried by the liposomes was quite similar to that of cholesterol carried by HDL. Cholesterol carried by HDL was metabolized in bile salts faster than that carried by LDL: cholesterol-HDL or cholesterol-liposomes contributed to the same extent to the secretion of bile cholesterol (15 and 11%, respectively, of the injected dose), LDL (20% of the injected dose). However, the main part of [14C]cholesterol from HDL, LDL or liposomes was metabolized in bile salts. Thus, cholesterol from an exogenous source seemed to be used mainly as a substrate for bile salts. Our study revealed a difference between the hepatic metabolism of HDL, liposomes and LDL in the rat: the kinetic difference between the secretions of the radioactive compounds in bile may be explained by differences in assimilation, intracellular pathways or bile secretion.  相似文献   

2.
Acetylated low-density lipoprotein (acetyl-LDL), biologically labelled in the cholesterol moiety of cholesteryl oleate, was injected into control and oestrogen-treated rats. The serum clearance, the distribution among the various lipoproteins, the hepatic localization and the biliary secretion of the [3H]cholesterol moiety were determined at various times after injection. In order to monitor the intrahepatic metabolism of the cholesterol esters of acetyl-LDL in vivo, the liver was subdivided into parenchymal, endothelial and Kupffer cells by a low-temperature cell-isolation procedure. In both control and oestrogen-treated rats, acetyl-LDL is rapidly cleared from the circulation, mainly by the liver endothelial cells. Subsequently, the cholesterol esters are hydrolysed, and within 1 h after injection, about 60% of the cell- associated cholesterol is released. The [3H]cholesterol is mainly recovered in the high-density lipoprotein (HDL) range of the serum of control rats, while low levels of radioactivity are detected in serum of oestrogen-treated rats. In control rats cholesterol is transported from endothelial cells to parenchymal cells (reverse cholesterol transport), where it is converted into bile acids and secreted into bile. The data thus provide evidence that HDL can serve as acceptors for cholesterol from endothelial cells in vivo, whereby efficient delivery to the parenchymal cells and bile is assured. In oestrogen-treated rats the radioactivity from the endothelial cells is released with similar kinetics as in control rats. However, only a small percentage of radioactivity is found in the HDL fraction and an increased uptake of radioactivity in Kupffer cells is observed. The secretion of radioactivity into bile is greatly delayed in oestrogen-treated rats. It is concluded that, in the absence of extracellular lipoproteins, endothelial cells can still release cholesterol, although for efficient transport to liver parenchymal cells and bile, HDL is indispensable.  相似文献   

3.
Intestinal lipoproteins in the rat with D-(+)-galactosamine hepatitis   总被引:2,自引:0,他引:2  
D-(+)-galactosamine (GalN) induces severe reversible hepatocellular injury in the rat accompanied by lecithin: cholesterol acyltransferase (LCAT) deficiency, defective chylomicron (CM) catabolism, and accumulation of abnormal plasma lipoproteins (Lps), including discoidal high density lipoproteins (HDL). These abnormalities are presumed to result from hepatic injury alone, but the effect of GalN on intestinal Lps has not been studied. To assess possible effects on intestinal Lp formation and secretion, mesenteric lymph fistula rats were injected with GalN or saline. Twenty-four hours later a 2-hr fasting lymph sample was collected; this was followed by an 8-hr duodenal infusion of a lipid emulsion containing 17.7 mM [3H]triolein at 3 ml/hr. Fasting lymph and fat-infused lymph flow rates, 3H, triglyceride, and cholesterol output, residual 3H in intestinal lumen and mucosa, total 3H recovery, and d less than 1.006 g/ml Lp size and lipid composition were unchanged by GalN treatment, but d less than 1.006 g/ml Lps were depleted of apoE and C. Fat-infused lymph phospholipid (PL) output was higher in GalN rats due to PL-enriched d greater than 1.006 g/ml Lps. Electron microscopy of lymph and plasma LDL and HDL revealed spherical Lps in all samples. GalN plasma, fasting lymph, and fat-infused lymph also contained large abnormal LDL and discoidal HDL. Control lymph LDL and HDL did not differ in size from control plasma LDL and HDL. Control lymph LDL contained both apoB240K and B335K. However, spherical LDL and discoidal HDL in fasting lymph from GalN rats differed significantly in size from the corresponding plasma particles and became closer in size to the plasma particles with fat infusion. GalN lymph LDL contained only apoB240K and had a lower PL/CE than GalN plasma LDL. GalN fasting lymph HDL, depleted of apoC and having a PL/CE of 5, became enriched in apoE and the PL/CE increased to 10 with fat infusion to closely resemble GalN plasma HDL. GalN reduces apoE and C (mainly of hepatic origin) in d less than 1.006 g/ml gut Lps, which may contribute to the CM catabolic defect in GalN rats. Lymph LDL and HDL, especially in fasting lymph, may be partially gut-derived with increased filtration of plasma Lps into lymph with fat infusion. GalN fat-infused lymph HDL is enriched in apoE, but unable to transfer apoE to d less than 1.006 g/ml intestinal Lps. We conclude that GalN hepatitis is a model that allows study of intestinal Lps with normal lipid digestion and absorption in the face of severe hepatic injury and LCAT deficiency.  相似文献   

4.
M.T.Ravi Subbiah 《Steroids》1980,36(4):497-505
Effect of plasma and individual lipoproteins on the incorporation of 14C-mevalonate into biliary bile acids and cholesterol by perfused rat liver was investigated. Use of plasma free perfysate (instead of whole blood) gave similar rates of incorporation of 14 C-mevalonate into biliary bile acids, but showed a decrease in percent distribution in cholic acid and a increase in β-muricholic acid. Addition of VLDL (isolated from Zucker rats) into the plasma free perfusate caused a significant increase in the incorporation of the label into bile acids, but LDL and HDL had no effect. HDL caused an increase in biliary excretion of 14C-cholesterol.  相似文献   

5.
Our results showed that alpha-asarone was an inhibitor of hepatic HMG-CoA reductase and that the administration of alpha-asarone at 80 mg/kg body wt. for 8 days decreased serum cholesterol by 38% (p < 0.001) in hypercholesterolemic rats. This alpha-asarone treatment affected mainly the serum LDL-cholesterol levels, leaving serum HDL-cholesterol lipoproteins unaffected, with a consequent decrease of 74% in the LDL/HDL ratio. In addition, alpha-asarone especially stimulated bile flow in hypercholesterolemic rats (60%), increasing the secretion of bile salts, phospholipids and bile cholesterol. The drug also reduced the cholesterol levels of gallbladder bile, whereas the concentration of phospholipids and bile salts increased only slightly, leading to a decrease in the cholesterol saturation index (CSI) of bile in the hypercholesterolemic rats. This CSI decrease and the increase in bile flow induced by alpha-asarone may account for the cholelitholytic effect of alpha-asarone. It seems that alpha-asarone induced clearance of cholesterol from the bloodstream and that the excess of hepatic cholesterol provided by LDL-cholesterol is diverted to bile sterol secretion via a bile choleresis process. The inhibition of HMG-CoA reductase and the increase in bile flow induced by alpha-asarone, as well as the decrease in the CSI, could then explain the hypocholesterolemic and cholelitholytic effects of alpha-asarone.  相似文献   

6.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

7.
Hepatic metabolism of [14C]cholesterol, vehiculated by LDL, HDL2 and HDL3 lipoprotein particles, has been studied in rats with a permanent biliary drainage. The lipoprotein fractions were infused individually by a jugular vein catheter and bile was collected for 180 min after the administration. At the end of this period, the animals were killed and the blood and livers were collected. The free cholesterol of the HDL2 fraction was secreted into bile, mainly as bile salt, preferentially to that associated with HDL3 and LDL fractions (11.7% vs. 2.3% and 0.3%, respectively). The free cholesterol of the HDL3 fraction, on the other hand, was taken up by liver more quickly and in a higher proportion than that associated with other lipoprotein fractions. The label incorporation in this lipoprotein fraction was secreted earlier and not transformed into bile. The contribution of LDL-vehiculated free cholesterol to bile secretion was small and the hepatic uptake amounted to no more than 12% of the injected label.  相似文献   

8.
There was a rapid transfer of radioactive peptides to other lipoprotein fractions during the first 30 min after the intravenous injection of 125I-labeled rat very low density lipoprotein (VLDL) into rats. After this initial redistribution of radioactivity, label disappeared slowly from all lipoprotein fractions. The disappearance of 125I-labeled human VLDL injected into rats was the same as that of rat VLDL. Most of the radioactivity transferred from VLDL to low density (LDL) and high density (HDL) lipoproteins was associated with two peptides, identified in these studies by polyacrylamide gel electrophoresis as zone IVa and IVb peptides (fast-migrating peptides, possibly analogous to some human C apolipoproteins), although radioactivity initially associated with zone I (analogous to human apolipoprotein B) and zone III (not characterized) was also transferred to LDL and HDL. That the transfer of label from VLDL to LDL and HDL primarily involved small molecular weight peptides was confirmed in studies using VLDL predominantly labeled in these peptides by in vitro transfer from 125I-labeled HDL. Both zone I and zone IV radioactivity was rapidly removed from VLDL during the first 5 min after injection. However, although most of the zone IV radioactivity was recovered in LDL and HDL, only 12% of the label lost from zone I of VLDL was recovered in other lipoproteins, with the remainder presumably having been cleared from the plasma compartment. We have concluded that, during catabolism of rat VLDL apoprotein, there is a rapid transfer of small molecular weight peptides to both LDL and HDL. During the catabolic process, most of the VLDL is rapidly removed from the circulation, with only a small portion being transformed into LDL molecules.  相似文献   

9.
The extent to which plasma HDL concentration regulates reverse cholesterol transport (RCT) is not known. The principal acceptors of unesterified cholesterol (UC) from cultured cells are small pre-beta-HDL, which we have shown increase in plasma during intravenous infusion of apolipoprotein A-I/phosphatidylcholine (apoA-I/PC) discs in humans. We have now examined the effects on tissue fluid HDL and RCT. ApoA-I/PC or proapoA-I/PC discs were infused into 16 healthy males. Eleven had been given intravenous radiocholesterol to label tissue pools; in 12 prenodal leg lymph was collected throughout; and in 8 all feces were collected. The rise in small pre-beta-HDL in plasma was associated with increases in 1) pre-beta-HDL concentration in lymph (all subjects), 2) the size of other lymph HDL (four of four subjects), 3) the cholesterol content of lymph lipoproteins relative to plasma lipoproteins (P < 0.01, n = 4), 4) cholesterol-specific radioactivity in lymph (five of nine subjects), 5) plasma lathosterol (P < 0.004, n = 4), 6) plasma cholesterol esterification rate (P < 0.001, n = 4), and 7) fecal bile acid excretion (P < 0.001, n = 8). These results support the hypothesis that small pre-beta-HDL generated in plasma readily cross endothelium into tissue fluid, and thereby promote efflux of UC from peripheral cells. After delivery to the liver, peripheral cholesterol appears to be utilized more for bile acid synthesis than for biliary cholesterol secretion in humans.  相似文献   

10.
Radioiodinated cholesteryl oleate (125I-CO) was found to associate rapidly with plasma lipoproteins following intravenous administration to rats. The high-density lipoprotein (HDL) fraction was observed to contain the highest amount of radioiodinated ester. Isolation and purification of this HDL fraction (125I-CO-HDL) and subsequent administration to rats demonstrated a plasma clearance similar to that previously observed for HDL labeled by direct iodination. Moreover, the concentration of radioactivity appearing in the adrenal cortex and ovary 0.5 h after intravenous administration of 125I-CO-HDL was greater than that observed after administration of 125I-CO, and the uptake of radioactivity by these tissues was considerably greater in hypolipidemic rats. These findings are consistent with existing knowledge relating to the metabolic fate of HDL and radioiodinated cholesterol derivatives in the rat, and suggest that radioiodinated cholesteryl esters may become useful probes for labeling lipoproteins.  相似文献   

11.
In an investigation of alterations in cholesterol metabolism during contraceptive steroid use, we studied plasma clearance of chylomicron remnants. Six healthy women were studied on and off contraceptive steroid therapy. Remnant clearance was measured from the disappearance of retinyl palmitate administered intravenously in plasma endogenously labeled with retinyl palmitate. We also measured cholesterol in HDL and its subfractions and postheparin lipoprotein lipase and hepatic triglyceride lipase activities. Plasma decay of retinyl palmitate was biexponential. The rapid component, reflecting chylomicron remnant removal, accounted for about 90% of the total clearance in all studies. During contraceptive steroid intake, both rapid and slow decay constants and the calculated plasma clearance rates were significantly increased (mean values: rapid decay constant, control 0.048 versus treated 0.101 min-1, P less than 0.05; slow decay constant, 0.004 versus 0.014 min-1, P less than 0.01; plasma clearance 74 versus 115 ml/min, P less than 0.025) indicating enhanced hepatic uptake of chylomicron remnants and probably an increased hepatic uptake of higher density lipoproteins (d greater than 1.006 g/ml). Total postheparin lipolytic activity and lipoprotein lipase activity were depressed in all six women (P less than 0.05) and hepatic triglyceride lipase activity was increased in four of five subjects. Contraceptive steroids also caused a decrease in the HDL2/HDL3 cholesterol ratio (P less than 0.05), implying impaired peripheral lipoprotein triglyceride hydrolysis and/or increased HDL2 clearance by hepatic triglyceride lipase. In conclusion, during intake of contraceptive steroids, the plasma clearance of chylomicron remnants and higher density lipoproteins was increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Treatment of rats fed a balanced Purina Chow diet with beta,beta'-tetramethyl-substituted hexadecanedioic acid (MEDICA 16) (Bar-Tana, J., Rose-Kahn, G., and Srebnik, M. (1985) J. Biol. Chem. 260, 8404-8410) resulted in an acute 70-80% decrease in plasma chylomicrons-triacylglycerols which was sustained as long as the drug was administered. The hypochylomicronemic effect resulted from an enhanced plasma clearance of chylomicrons whereas their intestinal production and absorption remained unaffected. Chylomicrons-triacylglycerols clearance in MEDICA 16-treated rats was characterized by a fast initial phase lasting for 1-2 min and consisting of elimination of 50-60% of the injected chylomicrons' tracer at a fractional clearance rate of 0.77 +/- 0.27 min-1 as compared to 0.08 +/- 0.01 min-1 in nontreated rats. The fractional clearance rate of chylomicrons-cholesterol ester was similarly affected by MEDICA 16 treatment and amounted to 0.48 +/- 0.05 and 0.05 +/- 0.01 min-1 in MEDICA 16-treated and nontreated rats, respectively. The increased fractional clearance rate of plasma chylomicrons in MEDICA 16-treated rats presumably reflects the primary action of the drug rather than being secondary to the hypochylomicronemic state, since it was similarly observed in MEDICA 16-treated animals made transiently normolipemic by loading them with intestinal lipid. The increase in the fractional clearance rate of plasma chylomicrons resulted from their enhanced uptake by the liver complemented with their activated extrahepatic catabolism. The activation of both catabolic modes in MEDICA 16-treated rats could be accounted for by a 10-fold decrease in the apoC-III content of plasma chylomicrons. No increase was observed in hepatic apoB,E or apoE receptors, nor in the maximal capacity of lipoprotein lipase. The pharmacological reduction of plasma apoC-III may thus offer a treatment mode of choice for selected hyperlipidemic states.  相似文献   

13.
Intact rats removed more radiolabelled triacylglycerol, cholesterol, and cholesterol ester but not phosphatidylcholine (PC) in the first 6 min than hepatectomized rats. There was no difference between intact and hepatectomized rats in the transfer of radiolabelled chylomicron lipids to other lipoproteins. Specific radioactivity measurements demonstrated a net transfer of PC (intact and hepatectomized rats) and unesterified cholesterol (intact rats only) onto both the low density lipoprotein/high density lipoprotein-1 (LDL/HDL1) and HDL2 fractions. [3H]Fatty acids were rapidly incorporated into blood cell phospholipids and into HDL and LDL cholesterol esters of both intact and hepatectomized rats. Substantial rearrangements of [3H]palmitate occurred during lipid uptake by liver.  相似文献   

14.
The role of human plasma lipid transfer protein (LTP) in lipoprotein metabolism was studied in the rat, a species without endogenous cholesteryl ester and triacylglycerol transfer activity. Partially purified human LTP was injected intravenously into rats. The plasma activity was between 1.5- and 4-fold that of human plasma during the experiments. 6 h after the injection of LTP, a significant increase in serum apoB, and no significant changes in serum total cholesterol, free cholesterol, triacylglycerols, apoA-I, apoE, or apoA-IV were noted. Cholesterol was increased in very-low density and low-density lipoproteins (VLDL and LDL) and decreased in large-sized apoE-rich HDL. ApoA-I-containing particles with a size smaller than in normal rats were present in serum of LTP-treated rats. The mean diameter of HDL particles decreased and apoE, normally present on large-sized HDL, was present on smaller sized particles. The metabolic fate of cholesteryl ester, originally associated with HDL, was studied by injection of [3H]cholesteryl linoleyl ether-labelled apoA-I-rich HDL in the absence and in the presence of LTP. The disappearance of [3H]cholesteryl linoleyl ether, injected as part of apoA-I-rich HDL, from serum was increased in the LTP-treated rats; the t1/2 changed from 3.9 to 2.2 h, resulting in an increased accumulation of [3H]cholesteryl linoleyl ether in the liver. This can be explained by the redistribution of HDL [3H]cholesteryl linoleyl ether to VLDL and LDL in the presence of LTP, leading to the combined contribution of VLDL, LDL and HDL to the hepatic uptake. The present findings show profound effects of LTP on the chemical composition of HDL subspecies, the size of HDL and on the plasma turnover and hepatic uptake of cholesteryl esters originally present in apo A-I-rich HDL.  相似文献   

15.
Bovine luteal cells can utilize low density lipoprotein (LDL) or high density lipoprotein (HDL) as a source of cholesterol for steroidogenesis, and administration of PGF-2 alpha in vitro suppresses lipoprotein utilization. The objective of this study was to examine the mechanism by which PGF-2 alpha exerts this effect. Cultured bovine luteal cells received 0.25 microCi[14C]acetate/ml, to assess rates of de-novo sterol and steroid synthesis, with or without lipoproteins. Both LDL and HDL enhanced progesterone production (P less than 0.01), but caused a significant reduction in the amount of radioactivity in the cholesterol fraction. PGF-2 alpha treatment inhibited the increase in lipoprotein-induced progesterone synthesis (P less than 0.01), but did not prevent the reduction in de-novo cholesterol synthesis brought about by LDL or HDL. PGF-2 alpha alone reduced cholesterol synthesis (P less than 0.01), but it was not as effective as either LDL or HDL. Both lipoproteins and PGF-2 alpha also decreased the amount of radioactivity in the progesterone fraction (P less than 0.01), and the effect of PGF-2 alpha was similar to that of the lipoproteins. It is concluded that lipoproteins can enhance progesterone production and also suppress de-novo cholesterol synthesis in bovine luteal cells, but only the former effect of lipoproteins is inhibited by PGF-2 alpha. Therefore, it is suggested that PGF-2 alpha allows entry of lipoprotein cholesterol into the cell, but prevents utilization for steroidogenesis. In addition, PGF-2 alpha alone can suppress cholesterol synthesis, as well as decrease conversion of cholesterol to progesterone.  相似文献   

16.
We have studied the hepatic uptake of human [14C] cholesteryl oleate labeled acetyl low density lipoprotein (LDL). Acetyl-LDL injected intravenously into rats was cleared from the blood with a half-life of about 10 min. About 80% of the injected acetyl-LDL was recovered in the liver after 1 h. Initially, most of the [14C]cholesterol was recovered in liver endothelial cells (about 60%). Some radioactivity (about 15%) was also recovered in the hepatocytes, while the Kupffer cells and stellate cells contained only small amounts of the label (less than 5%). About 1 h after injection, radioactivity started to disappear from endothelial cells and appeared instead in hepatocytes. Radioactivity subsequently declined in hepatocytes as well. After a lag phase of 4 h, significant amounts of radioactivity were recovered in bile. The in vitro uptake and hydrolysis of [14C]cholesteryl oleate-labeled acetyl-LDL were saturable in isolated rat liver endothelial cells. Native LDL does neither affect the uptake nor the hydrolysis of acetyl-LDL. Ammonia and monensin reduced the hydrolysis of acetyl-LDL in isolated liver endothelial cells. Furthermore, monensin at concentrations above 10 microM completely blocked the binding of acetyl-LDL to the liver endothelial cells, suggesting that the receptor for acetyl-LDL is trapped inside the cells. The liver endothelial cells may be involved in the protection against atherogenic lipoproteins, e.g. liver endothelial cells may mediate uptake of cholesterol from plasma and transfer of cholesterol to the hepatocytes for further secretion into the bile.  相似文献   

17.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

18.
Biliary secretion of the cholesteryl ester moiety of (modified) low-density lipoprotein (LDL) was examined under various experimental conditions in the rat. Human LDL or acetylated LDL (acetyl-LDL), radiolabelled with [3H]cholesteryl oleate, was administered intravenously to unanesthetized rats equipped with permanent catheters in the bile duct, duodenum and heart. LDL was cleared relatively slowly from plasma, mainly by Kupffer cells. At 3 h after injection, only 0.9% of the radioactivity was found in bile; after 12 h this value was 4.5%. Uptake of LDL by hepatocytes was stimulated by treatment of the rats with 17 alpha-ethinyloestradiol (EE; 5 mg/kg for 3 successive days); this resulted in a more rapid secretion of radioactivity into bile, 3.9% and 12.4% after 3 h and 12 h respectively. The extremely rapid uptake of acetyl-LDL via the scavenger pathway, mainly by endothelial cells, resulted in the secretion of only 2.1% of its 3H label into bile within 3 h, and 9.5% within 12 h. Radioactivity in bile was predominantly in the form of bile acids; only a small part was secreted as free cholesterol. However, the specific radioactivity of biliary cholesterol was higher than that of bile acids in all three experimental conditions. EE-treated animals did not form cholic acid from [3H]cholesteryl oleate, which was a major product of the cholesteryl oleate from LDL and acetyl-LDL in untreated rats, but formed predominantly very polar bile acids, i.e. muricholic acids. It is concluded that uptake of human LDL or acetyl-LDL by the liver of untreated rats is not efficiently coupled to biliary secretion of cholesterol (bile acids). This might be due to the anatomical localization of their principal uptake sites, the Kupffer cells and the endothelial cells respectively. Induction of LDL uptake by hepatocytes by EE treatment warrants a more efficient disposition of cholesterol from the body via bile.  相似文献   

19.
Our aim was to identify and quantify the major in vivo pathways of lipoprotein cholesteryl ester transport in humans. Normal (n = 7), bile fistula (n = 5), and familial hypercholesterolemia (FH; n = 1) subjects were studied. Each received isotopic free cholesterol in HDL, LDL, or particulate form, along with another isotope of free or esterified cholesterol or mevalonic acid. VLDL, intermediate density lipoprotein (IDL), LDL, HDL, blood cells, and bile were collected for up to 6 days for analysis of radioactivity and mass of free and esterified cholesterol. These raw data were subjected to compartmental analysis using the SAAM program. Results in all groups corroborated net transport of free cholesterol to the liver from HDL, shown previously in fistula subjects. New findings revealed that 70% of ester was produced from free cholesterol in HDL and 30% from free cholesterol in LDL, IDL, and VLDL. No evidence was found for tissue-produced ester in plasma. There was net transfer of cholesteryl ester to VLDL and IDL from HDL and considerable exchange between LDL and HDL. Irreversible ester output was from VLDL, IDL, and LDL, but very little was from HDL, suggesting that selective and holoparticle uptakes of HDL ester are minor pathways in humans. It follows that 1) they contribute little to reverse transport, 2) very high HDL would not result from defects thereof, and 3) the clinical benefit of high HDL is likely explained by other mechanisms. Reverse transport in the subjects with bile fistula and FH was facilitated by ester output to the liver from VLDL plus IDL.  相似文献   

20.
Proteins conjugated with lactose residues exhibit enhanced hepatic uptake mediated by the galactose receptor. In this study, we demonstrate that lactosaminated Fab fragments (lac-Fab) of IgG can induce hepatic catabolism of specific antigens, especially low density lipoproteins (LDL). lac-Fab and human LDL-lac-Fab complex exhibited specific uptake in isolated rat hepatocytes. In vivo in the rat, lactosamination enhanced plasma clearance of Fab fragments 2-fold and hepatic localization 20-fold. Fab fragments retained their affinity after lactosamination. Hepatic uptake of rat 125I-IgG complexed in vitro with anti-rat lac-Fab was increased almost 5-fold, compared to rat 125I-IgG alone. Injection of rats with anti-LDL lac-Fab induced plasma clearance and hepatic uptake of tracer amounts of previously injected human 125I-LDL, which decreased 50% 10 min after injection of lac-Fab, with 30% present in the liver. Asialofetuin completely inhibited these processes. After a bolus of 6 mg of human LDL, administration of anti-LDL lac-Fab reduced the serum cholesterol of rats to basal values within 2.5 h. These findings suggest that lactosaminated Fab fragments of specific IgGs are effective reagents for inducing hepatic uptake of macromolecules through the galactose receptor. lac-Fab specific for LDL may be an effective hypocholesterolemic agent in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号