共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic carbon uptake and respiratory C release from soil are major components of the global carbon balance. The use of 13C depleted CO2 (13C = –30) in a free air CO2 enrichment experiment in a mature deciduous forest permitted us to trace the carbon transfer from tree crowns to the rhizosphere of 100–120 years old trees. During the first season of CO2 enrichment the CO2 released from soil originated substantially from concurrent assimilation. The small contribution of recent carbon in fine roots suggests a much slower fine root turnover than is often assumed.13C abundance in soil air correlated best with temperature data taken from 4 to 10 days before air sampling time and is thus rapidly available for root and rhizosphere respiration. The spatial variability of 13C in soil air showed relationships to above ground tree types such as conifers versus broad-leaved trees. Considering the complexity and strong overlap of roots from different individuals in a forest, this finding opens an exciting new possibility of associating respiration with different species. What might be seen as signal noise does in fact contain valuable information on the spatial heterogeneity of tree-soil interaction. 相似文献
2.
D. R. Bowling W. J. Massman S. M. Schaeffer S. P. Burns R. K. Monson M. W. Williams 《Biogeochemistry》2009,95(1):37-59
Considerable research has recently been devoted to understanding biogeochemical processes under winter snow cover, leading
to enhanced appreciation of the importance of many winter ecological processes. In this study, a comprehensive investigation
of the stable carbon isotope composition (δ13C) of CO2 within a high-elevation subalpine forest snowpack was conducted. Our goals were to study the δ13C of biological soil respiration under snow in winter, and to assess the relative importance of diffusion and advection (ventilation
by wind) for gas transport within snow. In agreement with other studies, we found evidence of an active microbial community
under a roughly 1-m deep snowpack during winter and into spring as it melted. Under-snow CO2 mole fractions were observed up to 3,500 μmol mol−1, and δ13C of CO2 varied from ~−22 to ~−8‰. The δ13C of soil respiration calculated from mixing relationships was −26 to −24‰, and although it varied in time, it was generally
close to that of the bulk organic horizon (−26.0‰). Subnivean CO2 and δ13C were quite dynamic in response to changes in soil temperature, liquid water availability, and wind events. No clear biologically-induced
isotopic changes were observed during periods when microbial activity and root/rhizosphere activity were expected to vary,
although such changes cannot be eliminated. There was clear evidence of isotopic enrichment associated with diffusive transport
as predicted by theory, but simple diffusive enrichment (4.4‰) was not observed. Instead, ventilation of the snowpack by sustained
wind events in the forest canopy led to changes in the diffusively-enriched gas profile. The isotopic influence of diffusion
on gases in the snowpack and litter was greatest at greater depths, due to the decreased relative contribution of advection
at depth. There were highly significant correlations between the apparent isotopic content of respiration from the soil with
wind speed and pressure. In summary, physical factors influencing gas transport substantially modified and potentially obscured
biological factors in their effects on δ13C of CO2 within this subalpine forest snowpack. 相似文献
3.
In an old growth coniferous forest located in the central Cascade Mountains, Oregon, we added or removed aboveground litter and terminated live root activity by trenching to determine sources of soil respiration. Annual soil efflux from control plots ranged from 727 g C m−2 year−1 in 2002 to 841 g C m−2 year−1 in 2003. We used aboveground litter inputs (149.6 g C m−2 year−1) and differences in soil CO2 effluxes among treatment plots to calculate contributions to total soil efflux by roots and associated rhizosphere organisms and by heterotrophic decomposition of organic matter derived from aboveground and belowground litter. On average, root and rhizospheric respiration (Rr) contributed 23%, aboveground litter decomposition contributed 19%, and belowground litter decomposition contributed 58% to total soil CO2 efflux, respectively. These values fall within the range of values reported elsewhere, although our estimate of belowground litter contribution is higher than many published estimates, which we argue is a reflection of the high degree of mycorrhizal association and low nutrient status of this ecosystem. Additionally, we found that measured fluxes from plots with doubled needle litter led to an additional 186 g C m−2 year−1 beyond that expected based on the amount of additional carbon added; this represents a priming effect of 187%, or a 34% increase in the total carbon flux from the plots. This finding has strong implications for soil C storage, showing that it is inaccurate to assume that increases in net primary productivity will translate simply and directly into additional belowground storage. 相似文献
4.
Stomatal conductance in mature deciduous forest trees exposed to elevated CO<Subscript>2</Subscript>
Sonja Gisela Keel Steeve Pepin Sebastian Leuzinger Christian Körner 《Trees - Structure and Function》2007,21(2):261-159
Stomatal conductance (g
s) of mature trees exposed to elevated CO2 concentrations was examined in a diverse deciduous forest stand in NW Switzerland. Measurements of g
s were carried out on upper canopy foliage before noon, over four growing seasons, including an exceptionally dry summer (2003).
Across all species reductions in stomatal conductance were smaller than 25% most likely around 10%, with much variation among
species and trees. Given the large heterogeneity in light conditions within a tree crown, this signal was not statistically
significant, but the responses within species were surprisingly consistent throughout the study period. Except during a severe
drought, stomatal conductance was always lower in trees of Carpinus betulus exposed to elevated CO2 compared to Carpinus trees in ambient air, but the difference was only statistically significant on 2 out of 15 days. In contrast, stomatal responses
in Fagus sylvatica and Quercus petraea varied around zero with no consistent trend in relation to CO2 treatment. During the 2003 drought in the third treatment year, the CO2 effect became reversed in Carpinus, resulting in higher g
s
in trees exposed to elevated CO2 compared to control trees, most likely due to better water supply because of the previous soil water savings. This was supported
by less negative predawn leaf water potential in CO2 enriched Carpinus trees, indicating an improved water status. These findings illustrate (1) smaller than expected CO2-effects on stomata of mature deciduous forest trees, and (2) the possibility of soil moisture feedback on canopy water relations
under elevated CO2.
An erratum to this article can be found at 相似文献
5.
Carbon fluxes between natural ecosystems and the atmosphere have received increased attention in recent years due to the impact they have on climate. In order to investigate independently how soil moisture and temperature control carbon fluxes into and out of a dry subarctic dwarf shrub dominated heath, monoliths containing soil and plants were incubated at three different moisture levels and subjected to four different temperature levels between 7 and 20 °C. Ecosystem CO2 exchange was monitored continuously day and night during the 16 to 18 days that each of three experiments lasted. Additionally, the carbon allocation pattern of the plants was investigated by labelling monoliths with 14CO2 followed by harvest of above and below ground plant parts. The results revealed that the three different soil moisture levels caused distinctly differing levels of CO2 fluxes. Also, both carbon fixation calculated as gross ecosystem production (GEP) and carbon release measured as ecosystem respiration (ER) increased with increasing temperatures, with ER increasing faster than GEP. Hence, short term carbon loss from the ecosystem accelerated with raised temperatures. Temperature sensitivity of the ecosystem was dependent on the soil moisture level, shown by differing Q10 values of both GEP and ER at different soil moisture levels. It is therefore highly important to take soil moisture levels into consideration when evaluating responses of ecosystem carbon balance to changes in temperature. The greatest C fixation took place via the two most dominant species of the ecosystem, Vaccinium uliginosum and Empetrum hermaphroditum, with the former being responsible for the different size of C fixation at the three moisture levels. 相似文献
6.
J. H. Li D. P. Johnson P. Dijkstra B. A. Hungate C. R. Hinkle B. G. Drake 《Photosynthetica》2007,45(1):51-58
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C
a) on ecosystems, it is essential to determine the combined effects of drought and elevated C
a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the
average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C
a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P
N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P
N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on
leaf P
N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought.
Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon. 相似文献
7.
A comparison of three labeling strategies for studies involving side chain methyl groups in high molecular weight proteins,
using 13CH3,13CH2D, and 13CHD2 methyl isotopomers, is presented. For each labeling scheme, 1H–13C pulse sequences that give optimal resolution and sensitivity are identified. Three highly deuterated samples of a 723 residue
enzyme, malate synthase G, with 13CH3,13CH2D, and 13CHD2 labeling in Ile δ1 positions, are used to test the pulse sequences experimentally, and a rationalization of each sequence’s
performance based on a product operator formalism that focuses on individual transitions is presented. The HMQC pulse sequence
has previously been identified as a transverse relaxation optimized experiment for 13CH3-labeled methyl groups attached to macromolecules, and a zero-quantum correlation pulse scheme (13CH3 HZQC) has been developed to further improve resolution in the indirectly detected dimension. We present a modified version
of the 13CH3 HZQC sequence that provides improved sensitivity by using the steady-state magnetization of both 13C and 1H spins. The HSQC and HMQC spectra of 13CH2D-labeled methyl groups in malate synthase G are very poorly resolved, but we present a new pulse sequence, 13CH2D TROSY, that exploits cross-correlation effects to record 1H–13C correlation maps with dramatically reduced linewidths in both dimensions. Well-resolved spectra of 13CHD2-labeled methyl groups can be recorded with HSQC or HMQC; a new 13CHD2 HZQC sequence is described that provides improved resolution with no loss in sensitivity in the applications considered here.
When spectra recorded on samples prepared with the three isotopomers are compared, it is clear that the 13CH3 labeling strategy is the most beneficial from the perspective of sensitivity (gains ≥2.4 relative to either 13CH2D or 13CHD2 labeling), although excellent resolution can be obtained with any of the isotopomers using the pulse sequences presented
here. 相似文献
8.
Edoardo Daly Sari Palmroth Paul Stoy Mario Siqueira A. Christopher Oishi Jehn-Yih Juang Ram Oren Amilcare Porporato Gabriel G. Katul 《Biogeochemistry》2009,94(3):271-287
Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and
2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the
measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects
on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface
(within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from
the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests
that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes. 相似文献
9.
Subsurface CO<Subscript>2</Subscript> Dynamics in Temperate Beech and Spruce Forest Stands 总被引:1,自引:0,他引:1
Rates of soil respiration (CO2 effluxes), subsurface pore gas CO2/O2 concentrations, soil temperature and soil water content were measured for 15 months in two temperate and contrasting Danish
forest ecosystems: beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Soil CO2 effluxes showed a distinct seasonal trend in the range of 0.48–3.3 μmol CO2 m−2 s−1 for beech and 0.50–2.92 μmol CO2 m−2 s−1 for spruce and were well-correlated with near-surface soil temperatures. The soil organic C-stock (upper 1 m including the
O-horizon) was higher in the spruce stand (184±23 Mg C ha−1) compared to the beech stand (93±19 Mg C ha−1) and resulted in a faster turnover time as calculated by mass/flux in soil beneath the beech stand (28 years) compared to
spruce stand (60 years). Observed soil CO2 concentrations and effluxes were simulated using a Fickian diffusion-reaction model based on vertical CO2 production rates and soil diffusivity. Temporal trends were simulated on the basis of observed trends in the distribution
of soil water, temperature, and live roots as well as temperature and water content sensitivity functions. These functions
were established based on controlled laboratory incubation experiments. The model was successfully validated against observed
soil CO2 effluxes and concentrations and revealed that temporal trends generally could be linked to variations in subsurface CO2 production rates and diffusion over time and with depths. However, periods with exceptionally high CO2 effluxes (> 20 μmol CO2 m−2 s−1) were noted in March 2000 in relation to drying after heavy rain and after the removal of snow from collars. Both cases were
considered non-steady state and could not be simulated. 相似文献
10.
To examine the characteristics of carbon exchange in coniferous forests, we analysed the seasonal and diurnal patterns of CO2 exchange, as measured using the eddy covariance method, in a Japanese cypress forest in the Kiryu Experimental Watershed (KEW) in central Japan. The net CO2 exchange data during periods of low-friction velocity conditions and during periods of missing data were interpolated. The daily CO2 uptake was observed throughout the year, with maximum values occurring in early summer. Periods of low carbon uptake were seen in late summer owing to high respiratory CO2 efflux. The diurnal and seasonal patterns of daytime CO2 exchange at KEW were compared with those in a cool-temperate deciduous forest of the Tomakomai Experimental Forest (TOEF) in Japan. The environmental differences between evergreen and deciduous forests affected the seasonal patterns of carbon uptake. Although there were great differences in the mean monthly air temperatures between the sites, the mean monthly daytime carbon uptake was almost equal at both sites during the peak growing period. The carbon-uptake values at the same PAR level were greater before noon than after noon, especially at TOEF, suggesting the stomatal regulation of carbon uptake. 相似文献
11.
Markus Beck Erlach Joerg Koehler Edson CruscaJr. Claudia E. Munte Masatsune Kainosho Werner Kremer Hans Robert Kalbitzer 《Journal of biomolecular NMR》2017,69(2):53-67
For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For HN, N and Cα the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons. 相似文献
12.
Zheng Shi Yiqing Li Shaojun Wang Guobing Wang Honghua Ruan Rong He Yanfei Tang Zengxin Zhang 《Ecological Research》2009,24(6):1257-1265
Soil respiration (R s) is an important component of the carbon cycle in terrestrial ecosystems, and changes in soil respiration with land cover alteration can have important implications for regional carbon balances. In southeastern China (Xiashu Experimental Forest, Jiangsu Province), we used an automated LI-8100 soil CO2 flux system to quantify diurnal variation of soil respiration in a secondary oak forest and a pine plantation. We found that soil respiration in the pine plantation was significantly higher than that in the secondary oak forest. There were similar patterns of soil respiration throughout the day in both the secondary oak forest and the pine plantation during our 7-month study (March–September 2005). The maximum of R s occurred between 4:00 pm and 7:00 pm. The diurnal variations of R s were usually out of phase with soil surface (0.5 cm) temperature (T g). However, annual variation in R s correlated with surface soil temperature. Soil respiration reached to a maximum in June, and decreased thereafter. The Q10 of R s in the secondary oak forest was significantly higher than that in the pine plantation. The higher Q10 value in the secondary oak forest implied that it might release more CO2 than the pine plantation under a global-warming scenario. Our results indicated that land-use change from secondary forest to plantation may cause a significant increase in CO2 emission, and reduce the temperature sensitivity of soil respiration in southeastern China. 相似文献
13.
Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO<Subscript>2</Subscript> concentration 总被引:2,自引:0,他引:2
Plant stand gas exchange was measured nondestructively in microgravity during the Photosynthesis Experiment Subsystem Testing and Operations experiment conducted onboard the International Space Station. Rates of evapotranspiration and photosynthesis measured in space were compared with ground controls to determine if microgravity directly affects whole-stand gas exchange of Triticum aestivum. During six 21-day experiment cycles, evapotranspiration was determined continuously from water addition rates to the nutrient delivery system, and photosynthesis was determined from the amount of CO2 added to maintain the chamber CO2 concentration setpoint. Plant stand evapotranspiration, net photosynthesis, and water use efficiency were not altered by microgravity. Although leaf area was significantly reduced in microgravity-grown plants compared to ground control plants, leaf area distribution was not affected enough to cause significant differences in the amounts of light absorbed by the flight and ground control plant stands. Microgravity also did not affect the response of evapotranspiration to changes in chamber vapor pressure difference of 12-day-old wheat plant stands. These results suggest that gravity naïve plants grown at moderate light levels (300 mol m–2 s–1) behave the same as ground control plants. This implies that future plant-based regenerative life support systems can be sized using 1 g data because water purification and food production rates operate at nearly the same rates as in 1 g at moderate light levels. However, it remains to be verified whether the present results are reproducible in plants grown under stronger light levels. 相似文献
14.
We compared the foliar 15N and 13C values of Pinus massoniana growing on soils with and without microbiotic crust to examine the influence of the microbiotic crust on N and water use in plants in deteriorated watersheds in southern China. At our study site, litterfall and undergrowth had been intensively removed for fuel and soil N concentration was extremely low. Microbiotic crust covered the lower slope within the watersheds and pine trees were taller here than on the middle and upper slopes, although the crust reduced the amount of rainfall that could penetrate the soil. The foliar 15N values were greater (closer to zero) in pine trees growing on soil covered with microbiotic crust on the lower slope than on the middle and upper slopes, which lacked the microbiotic crust. These data suggest that P.massoniana may depend on N fixed by the microbiotic crust on the lower slope, and on N carried by precipitation on the middle and upper slopes. The microbiotic crust did not influence foliar 13C, an index for water use efficiency, in P.massoniana. The fact that P.massoniana biomass was greater on the lower slope, which is less permeable to rainfall, suggests that P.massoniana growth may be limited by the amount of available N rather than by water. The microbiotic crust may improve plant productivity by increasing N availability, despite its negative effect on water availability. 相似文献
15.
The carbon isotope composition of an animals breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the 13C of respired CO2 of small vertebrates. We measured the 13C of Rufous Hummingbirds (Selasphorus rufus) in the laboratory and of Mourning (Zenaida macroura) and White-winged (Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the 13C of respired CO2 was not significantly different from that of their diet (13CC3 diet). The 13C of respired CO2 for C3 fasted birds was slightly, albeit significantly, depleted in 13C relative to 13CC3 diet. Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the 13C of respired CO2 from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus (Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure 13C of respired CO2 in the lab and the field. 相似文献
16.
Kodama N Barnard RL Salmon Y Weston C Ferrio JP Holst J Werner RA Saurer M Rennenberg H Buchmann N Gessler A 《Oecologia》2008,156(4):737-750
The (13)C isotopic signature (C stable isotope ratio; delta(13)C) of CO(2) respired from forest ecosystems and their particular compartments are known to be influenced by temporal changes in environmental conditions affecting C isotope fractionation during photosynthesis. Whereas most studies have assessed temporal variation in delta(13)C of ecosystem-respired CO(2) on a day-to-day scale, not much information is available on its diel dynamics. We investigated environmental and physiological controls over potential temporal changes in delta(13)C of respired CO(2) by following the short-term dynamics of the (13)C signature from newly assimilated organic matter pools in the needles, via phloem-transported organic matter in twigs and trunks, to trunk-, soil- and ecosystem-respired CO(2). We found a strong 24-h periodicity in delta(13)C of organic matter in leaf and twig phloem sap, which was strongly dampened as carbohydrates were transported down the trunk. Periodicity reappeared in the delta(13)C of trunk-respired CO(2), which seemed to originate from apparent respiratory fractionation rather than from changes in delta(13)C of the organic substrate. The diel patterns of delta(13)C in soil-respired CO(2) are partly explained by soil temperature and moisture and are probably due to changes in the relative contribution of heterotrophic and autotrophic CO(2) fluxes to total soil efflux in response to environmental conditions. Our study shows that direct relations between delta(13)C of recent assimilates and respired CO(2) may not be present on a diel time scale, and other factors lead to short-term variations in delta(13)C of ecosystem-emitted CO(2). On the one hand, these variations complicate ecosystem CO(2) flux partitioning, but on the other hand they provide new insights into metabolic processes underlying respiratory CO(2) emission. 相似文献
17.
Using a radiogasometric method the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates
in the leaves of two groups of C3 species, differing in the ability of starch accumulation, were determined. One group included starch-accumulating (SA) species
with rates of starch synthesis on the average 38 % the rate of photosynthesis [Solanum tuberosum L., Arabidopsis thaliana (L.) Heynh, Helianthus annuus L., and Plantago lanceolata L.]. The second group represented starch-deficient (SD) species with rates of starch synthesis less than 8 % the rate of
photosynthesis (Secale cereale L., Triticum aestivum L., Hordeum vulgare L., and Poa trivialis L.). In SA species the rate of respiration in the dark was significantly higher than in SD species. No differences were found
in the rates of photosynthesis, photorespiration, and respiration under irradiation. Thus, the degree of inhibition of respiration
by irradiation was in SA species higher than in SD species. It is concluded that starch does not provide substrates for respiratory
and photorespiratory decarboxylations in irradiated photosynthesizing leaves. 相似文献
18.
Szilvia Fóti János Balogh Marianna Papp Péter Koncz Dóra Hidy Zsolt Csintalan Péter Kertész Sándor Bartha Zita Zimmermann Marianna Biró László Hováth Erik Molnár Albert Szaniszló Krisztina Kristóf Györgyi Kampfl Zoltán Nagy 《Ecosystems》2018,21(1):112-124
Spatial patterns of ecosystem processes constitute significant sources of uncertainty in greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim of this study was to describe temporal variability in the spatial patterns of grassland CO2 and N2O flux under varying environmental conditions and to assess effects of the grassland management (grazing and mowing) on flux patterns. We made spatially explicit measurements of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and soil temperature during a 4-year study in the vegetation periods at grazed and mowed grasslands. Sampling was conducted in 80 × 60 m grids of 10 m resolution with 78 sampling points in both study plots. Soil respiration was monitored nine times, and N2O flux was monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen were used as background factors at each sampling position, while aboveground biomass, soil water content, and soil temperature were considered as covariates in the spatial analysis. Data were analyzed using variography and kriging. Altitude was autocorrelated over distances of 40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, and the covariates. Altitude was inversely related to soil water content and aboveground biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to increase heterogeneity and linkage of the spatial patterns, whereas mowing had a homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground biomass were temporally variable especially in the first 2 years of the experiment, whereas spatial patterns were more persistent (mostly significant correlation at p < 0.05 between location ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns after a wet year indicated the recovery potential of grasslands following drought and suggested that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes. 相似文献
19.
A simple isotope labeling approach for selective 13C/15N backbone labeling of proteins is described. Using {1,2-13C2}-pyruvate as the sole carbon source in bacterial growth media, selective incorporation of 13Cα-13CO spin-pairs into the backbones of protein molecules with medium-to-high levels of 13C-enrichment is possible for a subset of 12 amino acids. The isotope labeling scheme has been tested on a pair of proteins—a
7-kDa immunoglobulin binding domain B1 of streptococcal protein G and an 82-kDa enzyme malate synthase G. A number of protein
NMR applications are expected to benefit from the {1,2-13C2}-pyruvate based protein production. 相似文献
20.
Leaf dynamics of a deciduous forest canopy: no response to elevated CO<Subscript>2</Subscript> 总被引:1,自引:0,他引:1
Leaf area index (LAI) and its seasonal dynamics are key determinants of terrestrial productivity and, therefore, of the response of ecosystems to a rising atmospheric CO2 concentration. Despite the central importance of LAI, there is very little evidence from which to assess how forest LAI will respond to increasing [CO2]. We assessed LAI and related leaf indices of a closed-canopy deciduous forest for 4 years in 25-m-diameter plots that were exposed to ambient or elevated CO2 (542 ppm) in a free-air CO2 enrichment (FACE) experiment. LAI of this Liquidambar styraciflua (sweetgum) stand was about 6 and was relatively constant year-to-year, including the 2 years prior to the onset of CO2 treatment. LAI throughout the 1999–2002 growing seasons was assessed through a combination of data on photosynthetically active radiation (PAR) transmittance, mass of litter collected in traps, and leaf mass per unit area (LMA). There was no effect of [CO2] on any expression of leaf area, including peak LAI, average LAI, or leaf area duration. Canopy mass and LMA, however, were significantly increased by CO2 enrichment. The hypothesized connection between light compensation point (LCP) and LAI was rejected because LCP was reduced by [CO2] enrichment only in leaves under full sun, but not in shaded leaves. Data on PAR interception also permitted calculation of absorbed PAR (APAR) and light use efficiency (LUE), which are key parameters connecting satellite assessments of terrestrial productivity with ecosystem models of future productivity. There was no effect of [CO2] on APAR, and the observed increase in net primary productivity in elevated [CO2] was ascribed to an increase in LUE, which ranged from 1.4 to 2.4 g MJ–1. The current evidence seems convincing that LAI of non-expanding forest stands will not be different in a future CO2-enriched atmosphere and that increases in LUE and productivity in elevated [CO2] are driven primarily by functional responses rather than by structural changes. Ecosystem or regional models that incorporate feedbacks on resource use through LAI should not assume that LAI will increase with CO2 enrichment of the atmosphere. 相似文献