首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ventricular myosin ATPase activity, V1 isomyosin content and serum T3 (tri-iodothyronine) values decrease with age in male Fischer 344 rats. To determine if the age decrement in ATPase activity and V1 isomyosin content are caused by decreased T3 levels or an age-related decrease in V1 isomyosin induction by T3, 3-, 12- and 24-month-old male Fischer 344 rats were given constant T3 infusions by osmotic minipump. Rats at all ages were given 0.75, 5 and 15 micrograms(/100 g per 24 h) doses of T3, whereas 12- and 24-month-old rats were given an additional 0.4 microgram dose. In control rats, T3 levels decreased from 97 +/- 2.7 at 3 months to 75 +/- 4.7 ng/100 ml at 24 months. Likewise, Ca2+-activated myosin ATPase activity decreased from 1.04 +/- 0.05 to 0.68 +/- 0.05 mumol of Pi/min per mg of protein, and the relative proportion of V1 of isomyosin decreased from 90 +/- 4.0 to 26 +/- 2.0%. The lowest (0.4 microgram) T3 dose, which was sufficient to restore T3 levels in 24-month-old animals to 3-month control values, abolished the age decrement in myosin ATPase activity and markedly increased the proportion of V1 isomyosin present in the ventricle. These findings indicate that the senescent ventricle responds readily to small doses of T3 and strongly suggest that the age decrement in serum T3 levels is sufficient to contribute to the age-related decrease in myosin ATPase activity and V1 isomyosin content. Since these parameters correlate with ventricular contractility, the age decrement in T3 levels may also contribute to the decreased ventricular contractility and cardiac output observed in senescent rats.  相似文献   

2.
Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors.  相似文献   

3.
In the 7–8- and the 10–11-day old male rat pups born to dams exposed to an immobilization stress for the last week of pregnancy and to the dams exposed to no stress (control), behavioral parameters were studied: the level of depression in the test of forced swimming (the Porsolt’s test) and 24 h after a long pain response during inflammation (the formalin test—a subcutaneous injection of 2.5% formalin into the hind leg plantar pad). In control pups, significant age-related changes in the forced swimming were revealed: the immobility time was longer in animals of the older age group, whereas no age differences were found in parameters of the persistent inflammatory pain and in flexing + shaking behavior. The prenatal stress produced an increase in the immobility time and the flexing + shaking behavior in the 7–8-day old, but not in the 10–11-day old rat pups. This resulted in elimination of the age differences in the immobility time in the prenatally stressed animals. Thus, use of different methodic approaches has allowed revealing peculiarities in the parameters of the degree of depression and duration of the pain response at inflammation in the 7–8- and 10–11-day old rat pups, which indicates heterogeneity of the infantile development stage that, according to literature data, includes in rats the period from the 5th to the 10th postnatal days.  相似文献   

4.
The effects of age on the activity and translocation of protein kinase C (PKC) and on the facilitation of 5-hydroxytryptamine (5-HT, serotonin) release induced by PKC activation with the phorbol ester phorbol 12-myristate 13-acetate were investigated. The activities of cortical PKC and its translocation in response to K+ depolarization and phorbol ester stimulation were reduced during aging in Fischer-344 rats. Parietal cortical brain slices from 6-, 12-, and 24-month-old animals were preloaded with [3H]5-HT and release was evoked by 65 mM K+ or the calcium ionophore A23187. 5-HT release induced by either K+ or A23187 was found to be reduced in 12- and 24-month-old as compared to 6-month-old animals. This decrease was not reversed by high extracellular Ca2+. Activation of PKC resulted in a facilitated transmitter release in tissue from 6- and 12-month-old animals but reduced [3H]5-HT release in slices from 24-month-old animals. These responses were prevented by the putative PKC inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), but not by increasing extracellular or intracellular Ca2+. The results demonstrate an age-related change (1) in brain PKC activity and translocation and (2) in a physiological response to PKC stimulation. These results may have implications for other PKC-mediated functions that are altered during senescence.  相似文献   

5.
6.
In recent years it has been shown that emotional stress induced by immobilization may change the balance between pro-oxidant and antioxidant factors inducing oxidative damage. On the other hand, contradictory views exist concerning the role of physical activity on redox metabolism. Consequently, the present work was designed to assess the influence of an 8-week moderate swimming training program in emotionally stressed rats. Sixty 1-month-old male albino Wistar rats weighing 125-135 g were used in this experimental study. They were divided into three groups, as Control (lot A; n=20), Stressed (lot B; n=20) and Stressed & Exercised (lot C; n=20). Rats were stressed by placing the animals in a 25 x 7 cm plastic bottle 1 h/day, 5 days a week for 8 weeks. Protein carbonyl content values in liver homogenates were significantly increased in stressed animals (0.58+/-0.02 vs 0.86+/-0.03; p=0.018) which clearly indicated that emotional stress was associated with oxidative stress. Ultrastructural alterations, predominantly mitochondrial swelling and the decrease of cristae number observed by electron microscopy represented direct evidence of membrane injury. The most striking feature of our study was that we also found differences between stressed rats and stressed rats that performed our 8 week training program. Consequently our results highlight the potential benefit of a moderate training program to reduce oxidative damage induced by emotional stress since it attenuated protein oxidation and mitochondrial alterations.  相似文献   

7.
Glucocorticoids are well-known mediators of stress-related endocrine, autonomic, and behavioral responses in mammals and human beings. However, our understanding of the mechanisms of glucocorticoid action in response to stress remains elusive. Therefore, in the present study, an effort has been made to systematically examine glucocorticoid action during acute (2 h) and repeated (2 h daily for 7, 15, and 30 days) immobilization stress in male Sprague-Dawley rats. Prolonged 30-day stress resulted in reduced total body weight gain. There was a dramatic 3- to 4-fold increase in plasma corticosterone levels after single acute stress paradigm, which remained augmented 2- to 3-fold higher than basal control levels during the repeated 30-day immobilization conditions. There was good relationship between increased plasma corticosterone levels and elevation of tyrosine aminotransferase activity in the liver during 30 days of stress. Because repeated immobilization stress animals showed increased levels of both plasma corticosterone and tyrosine aminotransferase activity, the regulation of cytosolic glucocorticoid receptor (GR) in rat liver, a major target tissue for glucocorticoid, was carried out during repeated stress by using GR binding assay, exchange assay, and Western blotting techniques. Exposure of animals to acute and repeated stress resulted in decreased free cytosolic GR. Interestingly, the bound cytosolic GR increased remarkably in liver during prolonged stress of 7-30 days. Overall, results obtained by using both binding assays and Western blotting for the first time showed that repeated stress animals had higher levels of total hepatic cytosolic GR as compared to control animals. These novel results suggest that repeated stress influences the hypothalamic-pituitary-adrenal axis in rats by elevating both the level of plasma corticosterone and total hepatic cytosolic GR.  相似文献   

8.
In order to develop the notions about the causes of age-dependent changes in the organism resistance to the influence of damaging stress factors the study of aldehyde reductase activity manifestations was carried out in the liver of 1.5-, 2-, 6-, 12-, 24-months-old rats subject to immobilization stress with different values of pH of reactive mixture. It has been shown that the immobilization stress is accompanied by the shift of the enzyme pH-optimum to the acid side. This change manifestation in 1.5-months-old and 24-months-old animals has been less significant as compared with that in the rats of other age groups.  相似文献   

9.
A high-molecular mass ATP-dependent proteinase was shown to be identical to a multicatalytic proteinase, ingensin [(1988) Eur. J. Biochem. 177, 261-266]. The molecular mass of this proteinase increased in crude extracts of the rat liver and porcine brain, but not in the purified sample, only when the proteinase was extracted with ATP. The higher-molecular form of ingensin may be the intact one, because the concentration of ATP in vivo never decreases below 1 mM. This form of the proteinase is latent and it requires a high concentration of detergent for activation. On chromatography, it was found that the high-molecular form corresponds to the previously reported minor isoenzyme of ingensin [(1986) Biochim. Biophys. Acta 882, 297-304], ingensin A, or possibly to the ATP/ubiquitin-dependent 26S protease [(1987) J. Biol. Chem. 262, 8303-8313], and the low-molecular form to major ingensin B or the ATP/ubiquitin-independent 20 S protease.  相似文献   

10.
The time course of stress-induced testicular hyposensitivity to gonadotropins was studied in hypophysectomized or naloxone-treated rats exposed to various periods of immobilization. Blood was collected from a chronically indwelling intra-atrial catheter every hour for luteinizing hormone (LH) and testosterone (T) measurement. Eight hours of immobilization completely suppressed T secretion without significant effect on LH. Human chorionic gonadotropin (hCG, 5 IU/rat, i.m.) induced a marked increase in plasma T levels in normal control groups 3 h post-injection while in immobilized rats the response was completely abolished, even after only 30 min of stress. In hypophysectomized rats, as expected, plasma T levels were undetectable, but, contrary to results obtained in normal animals, hCG induced a similar increase of plasma T levels both in control and stressed rats. Immobilization stress failed to inhibit plasma T values in hypophysectomized rats pretreated for 4 days with human menopausal gonadotropin (hMG) + hCG, while it did so in similarly treated normal animals. Naloxone induced a rise of plasma LH and T levels in control rats, but did not antagonize the stress-induced fall of plasma T concentration. In all groups, steroid testicular content mimicked variations of plasma T values. In particular, in stressed animals the lack of accumulation of testicular 17-hydroxyprogesterone probably reflected a normal activity of 17-20 lyase. These results indicate that stress induces very rapidly a state of Leydig cell hyposensitivity to gonadotropins and a blockade of T biosynthesis. The causal relationship between the two effects is presently not clear but these events seem to be due to stress-induced release of an inhibitory factor of pituitary origin other that endorphin.  相似文献   

11.
There is growing evidence of the brain's ability to increase its reliance on alternative metabolic substrates under conditions of energy stress such as starvation, hypoxia and ischemia. We hypothesized that following traumatic brain injury (TBI), which results in immediate changes in energy metabolism, the adult brain increases uptake and oxidation of the alternative substrate beta-hydroxybutyrate (betaHB). Arterio-venous differences were used to determine global cerebral uptake of betaHB and production of 14CO2 from [14C]3-betaHB 3 h after controlled cortical impact (CCI) injury. Quantitative bioluminescence was used to assess regional changes in ATP concentration. As expected, adult sham and CCI animals with only endogenously available betaHB showed no significant increase in cerebral uptake of betaHB or 14CO2 production. Increasing arterial betaHB concentrations 2.9-fold with 3 h of betaHB infusion failed to increase cerebral uptake of betaHB or 14CO2 production in adult sham animals. Only CCI animals that received a 3-h betaHB infusion showed an 8.5-fold increase in cerebral uptake of betaHB and greater than 10.7-fold increase in 14CO2 production relative to sham betaHB-infused animals. The TBI-induced 20% decrease in ipsilateral cortical ATP concentration was alleviated by 3 h of betaHB infusion beginning immediately after CCI injury.  相似文献   

12.
45Ca2+ uptake and cytosolic Ca2+ concentrations [( Ca2+]i) were measured in synaptosomes prepared from the cerebral cortex of 3-, 16-, and 24-month-old male Charles River Wistar rats. Electron-microscopic examination demonstrated no morphological differences between the synaptosomes prepared from 3- and 24-month-old rats. The fast phase of Ca2+ uptake was reduced in the 24-month-old animals as compared to the 3-month-old ones (-23%, p less than 0.001), whereas no difference was found between the 16- and the 3-month-old rats. Age did not modify [Ca2+]i, as measured by the quin 2 technique, both at rest and immediately after depolarization with 50 mM K+. The Ca2+ load following depolarization was cleared in about 13 min in the 3-month-old rats. The rate of clearance was significantly slower both in the 16- (p less than 0.01) and in the 24-month-old rats (p less than 0.0001). The addition of verapamil (60 microM) after depolarization restored [Ca2+]i to resting level in aged rats at the same rate as in young rats. A prolonged Ca2+ influx, therefore, may be responsible for the slower clearance of Ca2+ load in aged rats.  相似文献   

13.
We have investigated the proteolytic degradation of [14C]methylcasein and 125I-labeled bovine serum albumin at pH 7.8 and 37 degrees C by lysates of rabbit reticulocytes purified from rabbit blood by two different procedures. (I) Lysates obtained from reticulocytes after removal of plasma and buffy coat as well as after washing of cells, degraded casein and albumin, and released from the two substrates 1.3%/h and 0.4%/h, respectively, of acid-soluble radioactivity. The activity towards both substrates was stimulated about 4-fold by ATP/Mg2+. Chromatography of whole blood on a column of cellulose prior to washing and lysis of cells had profound but differential effects on these activities in that stimulation of casein-degradation by ATP/Mg2+ was almost completely lost, whereas degradation of albumin, albeit at a low rate, was measurable in the presence of ATP/Mg2+ only. (II) Degradation of casein by these lysates is largely inhibited by a monospecific antibody against rabbit multicatalytic proteinase, whereas digestion of albumin is not affected by the antibody, either in the presence or absence of ATP/Mg2+. The latter activity is partially inhibited by a specific antibody against rabbit alpha 1-macroglobulin. (III) The immunoreactive amount of multicatalytic proteinase is about 1.2 micrograms per mg of lysate protein and almost identical in the two lysates. In contrast, the immunologically detectable levels of alpha 1-macroglobulin vary and are much lower in reticulocyte-lysates following chromatography on cellulose than in lysates from washed reticulocytes. (IV) Caseinolytic activity of multicatalytic proteinase, purified from rabbit reticulocyte lysate, is not activated by ATP/Mg2+ and the enzyme is proteolytically inactive towards albumin. On the other hand, a complex consisting of the proteinase inhibitor alpha 1-macroglobulin and the cysteine proteinase, cathepsin B, does degrade both substrates at pH 7.8, in an ATP/Mg2+-activated fashion. From these results it is concluded that the multicatalytic proteinase is an ATP-independent enzyme and a cellular constituent of rabbit reticulocytes whereas the activity stimulated by ATP/Mg2+ appears to be associated, at least in part, with a cysteine proteinase complexed to alpha 1-macroglobulin.  相似文献   

14.
Baby hamster kidney (BHK) 21/C13 cell proteins, labeled with [35S]methionine, [14C]leucine or [3H]leucine in intact cells, were degraded in soluble, cell-free extracts by an ATP-stimulated process. The stimulatory effect of ATP appeared to require ATP hydrolysis and was mediated to a large extent by ubiquitin. Although the cell extracts contained endogenous ubiquitin, supplementation with exogenous ubiquitin increased ATP-dependent proteolysis by up to 2-fold. Furthermore, antibodies against the E1 ubiquitin conjugating enzyme specifically inhibited both conjugation of [125I]ubiquitin to endogenous proteins and ATP/ubiquitin-dependent proteolysis. Addition of purified E1 to antibody-treated extracts restored conjugation and proteolysis. Proteins containing the amino acid analogues canavanine and azatryptophan were also degraded in vitro by an ATP/ubiquitin-dependent process but at a rate up to 2-fold faster than normal proteins. These results indicate that soluble, cell-free extracts of BHK cells can selectively degrade proteins whose rates of degradation are increased in intact cells. Treatment of cell-free extracts with antibodies against the high molecular weight proteinase, macropain, also greatly inhibited the ATP/ubiquitin-dependent degradation of endogenous proteins. Proteolysis was specifically restored when purified macropain L was added to the antibody-treated extracts. Treatment of cell extracts with both anti-macropain and anti-E1 antibodies reduced ATP/ubiquitin-dependent proteolysis to the same extent as treatment with either antibody alone. Furthermore, proteolysis could be restored to the double antibody treated extracts only after addition of both purified E1 and macropain. These results provide strong evidence for an important role for macropain in the ATP/ubiquitin-dependent degradation of endogenous proteins in BHK cell extracts.  相似文献   

15.
Inositol 1,4,5-trisphosphate (IP3) is one of the second messengers, which triggers calcium release from intracellular pools via IP3 receptors. Previously we have shown that single immobilization stress increased gene expression of both, the type 1 and type 2 IP3 receptors (IP3R1 and IP3R2, respectively). In this study we evaluated whether long-term exposure to softer stressor (cold exposure to 4 degrees C) can affect the response to single immobilization stress. We examined modulation of the type 1 IP3 receptor gene expression by each stressor separately, and then in their combination. Rats were immobilized for 30 min and 120 min and were decapitated immediately or 3 h after immobilization. Cold stress was performed by exposure of animals to 4 degrees C temperature for 1, 7 and 28 days. To determine the effect of both stressors in combination, animals exposed to cold for 28 days were afterwards exposed to immobilization for 120 min and decapitated 3 h after the end of stressful stimulus. Our results verify that single immobilization increases the IP3R1 gene expression in left atria of rat heart, while cold stress elevates the level of gene expression only after the exposure to cold for 7 days. The exposure to cold for 28 days did not increase the gene expression of the type 1 IP3 receptor compared to control. Application of both stressors (28 days of cold exposure followed by 120 min of immobilization with subsequent 3 h rest) showed the tendency of increased IP3R1 gene expression compared to absolute, nonstressed control, but level of the type 1 IP3 receptor mRNA was significantly lower compared to mRNA levels of solely immobilized animals. Thus, cold exposure affects the response of the gene expression of the type 1 IP3 receptor to immobilization stress.  相似文献   

16.
Acetylcholinesterase (AchE, EC 3.1.1.7) activity was determined in cerebral cortex, hypothalamus, adenohypophysis and adrenal gland in response to acute and chronic stress. Chronic exposure of animals to cold stress (at 4 degrees C for 7 days) resulted in significant decline of AchE activity in all tissues studied. Similar results were obtained when animals were exposed to acute immobilization and cold stress (at 4 degrees C) simultaneously. In another experiment, animals were treated with 2 mg/kg of corticosterone prior to AchE determination. Corticosterone administration resulted in a significant decline in AchE activity of the cortex, the hypothalamus and the adrenal but failed to affect the adenohypophysis AchE level. Exposing adrenalectomized animals to acute stress resulted in no significant changes in the cortex and the hypothalamus but caused a significant decline in AchE of the adenohypophysis. It was concluded from this study that corticosterone might mediate the stress effect on AchE activity.  相似文献   

17.
We studied the effects of maternal stress (the so-called prenatal stress, PS, provided by immobilization of pregnant female Wistar rats for 1 h daily during the 15–21st gestational days) on the corticosterone response in the blood plasma evoked by infusion of 10 μg noradrenaline bitartrate into the III cerebral ventricle or by injection of β-1-24-corticotropin in 3-month-old male and female offspring. The animals were bearing an intracerebroventricular stainless steel guide cannula implanted eight to nine days before the experiment, and a Silastic catheter inserted into the external jugular vein 24 h prior to the experiment. Blood samples were periodically taken from conscious unrestrained rats (before and then 30, 60 and 90 or 120 min after noradrenaline or corticotropin challenge). In the male offspring PS augmented and prolonged an increase in the plasma corticosterone level resulting from adrenergic stimulation of the hypothalamus, as compared with that in non-stressed animals. In prenatally stressed female offspring tested in diestrus, there was no response of the hypothalamic-pituitary-adrenal (HPA) axis to intracerebroventricular noradrenaline stimulation, in contrast to what was observed in the control. Prenatal stress did not modify the adrenal cortex responsiveness to corticotropin either in male or in female offspring. The results demonstrate differential effects of PS on the adrenergic activation of the HPA axis in males and females. A decrease in the acute HPA stress-responsiveness in prenatally stressed male rats, which was demonstrated in an earlier study, and the maintenance or even enhancement of this effect in prenatally stressed females are not likely to be connected with the state of hypothalamic adrenergic reactivity.  相似文献   

18.
Kumar G  Knowles NR 《Plant physiology》1996,112(3):1301-1313
Glutathione-mediated free-radical-scavenging and plasma membrane ATPase activities increase as sinks for metabolic energy with advancing tuber age. Plasma membrane ATPase activity from 19-month-old tubers was 77% higher than that from 7-month-old tubers throughout sprouting. The higher activity was not attended by an increase in the amount of ATPase per unit plasma membrane protein. Concentrations of oxidized (GSSG) and reduced glutathione more than doubled as tuber age advanced from 6 to 30 months, but the proportion of GSSG to total glutathione remained constant with age. The activity of glutathione transferase, an enzyme that catabolizes lipid-hydroperoxides, increased by 44 and 205% on a fresh weight and protein basis, respectively, as tubers aged from 6 to 30 months. Glutathione reductase activity also increased with advancing age, by 90% on a fresh weight basis and 305% on a protein basis. Older tubers had more glutathione reductase per unit of soluble and mitochondrial protein. The age-induced increase in cytosolic glutathione transferase activity was likely due to increased availability of lipid-hydroperoxides and/or a positive effector. Synthesis of glutathione requires ATP, and the increased reduction of GSSG resulting from catalysis of lipid-hydroperoxides is NADPH-dependent. Thus, increased plasma membrane ATPase and glutathione-mediated free-radical-scavenging activities likely constitute substantial sinks for ATP in older tubers prior to and during sprouting. Increased oxidative stress and loss in membrane integrity and central features of aging that undoubtedly contribute to the enhanced respiration of sprouting older tubers.  相似文献   

19.
Energy metabolism was studied in the cerebral cortex of gerbils during and following ischemia induced by 1 h of unilateral carotid artery occlusion. An aneurysm clip was applied to the right common carotid artery of 50-70 g gerbils under brief halothane anesthesia, and the clip was removed 1 h later. Clinical state (gait, responsiveness, seizures) was evaluated during carotid occlusion, and 40% of the animals showed clinical evidence of stroke. Cortical energy stores (2 ATP + ADP + P-creatine) were more than half depleted in the ipsilateral cortex of clinically-affected gerbils, and glucose fell by 75%; lactate rose over 7-fold in the same specimens. After release of the carotid clip, clinical state improved, and biochemical abnormalities partially resolved. However, even after 24 h, the concentration of ATP and the total pool of adenine nucleotides remained subnormal. Metabolic activity in the ischemic cortex, assessed as the utilization of high-energy phosphates following decapitation, was normal after 1 h of recovery and decreased (-50%) after 24 h but was increased by more than 50% after 4 h. Cerebral glucose utilization, evaluated from autoradiographs prepared after intravenous administration of 2-[1-14C]deoxyglucose, was also increased in the cortex, hippocampus, and thalamus after 4 h of recovery. This post-ischemic hypermetabolism in tissue damaged by ischemia may identify a critical period for cell repair, when therapy could be decisive.  相似文献   

20.
The effects of high alpha-linolenate content on lipid peroxidation, oxidative stress and loss of plant growth potential during ageing of potato (Solanum tuberosum L.) seed-tubers was examined. Endoplasmic reticulum (FAD3) and plastidal (FAD7) 18:2 fatty acid desaturases were upregulated in potato (cv. Desiree), resulting in a 2-fold average increase in mol percentage 18:3 in the total lipid fraction across all transgenic clones. In double-transformed (FAD3+7) tubers, high alpha-linolenate phenotype effected accelerated ageing, resulting in growth responses characteristic of older seed-tubers. Although respiration rates of wild-type (WT) and FAD3+7 tubers were equal at 7 months of storage, rates had increased by 23% and 50% in WT and FAD3+7 tubers, respectively, by 19 months of storage. Electrolyte leakage of tissue from 19-month-old FAD3+7 tubers was significantly greater than that from WT tubers of the same age, indicating that the high alpha-linolenate phenotype was detrimental to membrane integrity during long-term storage. On average, indices of lipid peroxidation (malondialdehyde, ethane, C-6 aldehydes) were higher in older FAD3+7 tubers, relative to WT tubers. Activities of glucose-6-phosphate dehydrogenase, peroxidase, glutathione reductase, ascorbate peroxidase and monodehydroascorbate reductase increased in tubers with advancing age and were higher, on average, in FAD3+7 tubers. Dehydroascorbate reductase activity decreased with age, with no difference between transgenic and WT lines. Collectively, these results indicate that FAD3+7 tubers underwent a higher degree of oxidative stress during ageing. The age-induced increase in respiration of FAD3+7 tubers was at least partly a response to fuel increased free radical scavenging through the ascorbate-glutathione antioxidant pathway. By affecting the susceptibility of lipids to peroxidation, the degree of fatty acid unsaturation influenced the development of oxidative stress and the overall rate at which growth potential was lost from seed-tubers during ageing. Thus, oxidative stress plays an integral role in modulating the ageing process to affect growth potential from potato seed-tubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号