首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate pathway were investigated in adults and infective larvae of Ancylostoma ceylanicum and Nippostrongylus brasiliensis, and their activities were compared with those obtained in rat liver. A complete sequence of enzymes of the TCA cycle, with most of them showing activities quite similar to those in the rat liver homogenate, was detected in adults of both species. All the enzymes except fumarase and malate dehydrogenase were located predominantly in mitochondria where they showed a variable distribution of activities between the soluble and the membranes fractions. Malate dehydrogenase and fumarase were found in both the mitochondria and the 9,000-g supernatant fraction. Succinyl CoA synthetase, which was present in minimum activity, appeared rate limiting. Enzymes of the glyoxylate pathway, particularly isocitrate lyase, seemed to aid the functioning of the Krebs cycle by allowing the formation of succinate from isocitrate. The infective larvae of both species also were found equipped with all the enzymes of the Krebs cycle. Nonetheless, only isocitrate lyase of the glyoxylate pathway could be detected in these parasites.  相似文献   

2.
Key enzymes of the glyoxylate cycle (isocitrate lyase and malate synthetase) were found in the liver and kidney of rats suffering from alloxan diabetes. The activities of these enzymes in the liver were 0.080 and 0.0430 U/mg protein, respectively. Isocitrate lyase activity in the kidney was 0.030 U/mg protein, and that of the malate synthetase was 0.018 U/mg protein. Peroxisomal localization of the enzymes was shown. A novel malate dehydrogenase isoform was found in a liver of rats suffering from the alloxan diabetes. The isocitrate lyase was isolated by selective (NH4)2SO4 precipitation and DEAE-Toyopearl chromatography. The resulting enzyme preparation had specific activity 6.1 U/mg protein, corresponding to 76.25-fold purification with 32.6% yield. The isocitrate lyase was found to follow the Michaelis--Menten kinetic scheme (Km for isocitrate, 0.08 mM) and to be competitively inhibited by glucose 1-phosphate (Ki = 1. 25 mM), succinate (Ki = 1.75 mM), and citrate (Ki = 1.0 mM); the pH optimum of the enzyme was 7.5 in Tris-HCl buffer.  相似文献   

3.
4.
Pseudomonas MS can grow on methylamine and a number of other compounds containing C1 units as a sole source of carbon and energy. Assimilation of carbon into cell material occurs via the "serine pathway" since enzymes of this pathway are induced after growth on methylamine, but not malate or acetate. A mutant has been isolated which is unable to grow on methylamine or any other related substrate providing C1 units. This mutant is also unable to grow on acetate. Measurment of enzyme activities in cell-free extracts of wild-type cells showed that growth on methylamine caused induction of isocitrate lyase, a key enzyme in the glyoxylate cycle. The mutant organism lacks malate lyase, a key enzyme of the serine pathway, and isocitrate lyase as well. These results suggest that utilization of C1 units by Pseudomonas MS results in the net accumulation of acetate which is then assimilated into cell material via the glyoxylate cycle.  相似文献   

5.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, have been detected in liver of foodstarved rats. Activities became measurable 3 days and peaked 5 days after the beginning of starvation. Both enzymes were found in the peroxisomal cell fraction after organelle fractionation by isopycnic centrifugation. Isocitrate lyase was purified 112-fold by ammonium sulfate precipitation, and chromotography on DEAE-cellulose and Toyopearl HW-65. The specific activity of the purified enzyme was 9.0 units per mg protein. The Km(isocitrate) was 68 μM and the pH optimum was at pH 7.4. Malate synthase was enriched 4-fold by ammonium sulfate precipitation. The enzyme had a Km(acetyl-CoA) of 0.2 μM, a Km(glyoxylate) of 3 mM and a pH optimum of 7.6.  相似文献   

6.
Isocitrate lyase catalyzes the reversible cleavage of isocitrate into glyoxylate and succinate. The kinetic mechanism of bacterial isocitrate lyase has been reported to be ordered uni-bi. Moreover, it has been proposed that isocitrate lyase in higher plants may be switched on and off by a succinylation/desuccinylation mechanism. Similarly to bacterial citrate lyase, in which an acetylation/deacetylation mechanism is operative, succinylation might also play a role in the catalytic mechanism of plant isocitrate lyase. We have investigated the kinetic mechanism of isocitrate lyase from Lupinus seeds. The results reported in this paper show that the system follows a preferentially ordered uni-bi pathway in which the succinate is released first. On the basis of our results and some other recently reported data, we conclude that it is unlikely that bacterial and plant isocitrate lyases have different catalytic mechanisms.  相似文献   

7.
Summary Enzyme activities of the tricarboxylic acid (TCA) cycle and the anaplerotic pathways, as well as the cell cytology of two C. lipolytica mutants with the modified glyoxylate cycle and their parent strain were studied during the exponential growth phase on glucose or hexadecane.Among the TCA cycle enzymes, the key enzyme citrate synthase had the highest activity in all three strains grown on both substrates. NAD-dependent isocitrate dehydrogenase had the minimum activity. All strains had well-developed mitochondria.Pyruvate carboxylation was active in the wild strain and mutant 2 grown on glucose, where this reaction is the basic anaplerotic pathway for oxal-acetate synthesis; mutant 1 had actively functioning enzymes for both anaplerotic pathways — pyruvate carboxylase, isocitrate lyase and malate synthase.During hexadecane assimilation, the number of peroxisomes in all strains increased sharply, accompanied by a simultaneous increase in isocitrate lyase activity.The low activities of both isocitrate lyase and pyruvate carboxylase in mutant 2 give reason to believe that this strain has an additional pathway for oxalacetic acid synthesis during the assimilation of n-alkane.  相似文献   

8.
The presence and some properties of the key enzymes of the glyoxylate cycle, isocitrate lyase (threo-Ds-isocitrate glyoxylate-lyase, EC 4.1.3.1) and malate synthase (L-malate glyoxylate-lyase (CoA-acetylating) EC 4.1.3.2), were investigated in Leptospira biflexa. Isocitrate lyase activity was found for the first time in the organism. The enzyme was induced by ethanol but not by acetate. The optimum pH was 6.8. The activity was inhibited by phosphoenolpyruvate, a specific inhibitor of isocitrate lyase. The optimum pH of malate synthase of L. biflexa was about 8.5. The Km value for glyoxylate was 3.0 × 10?3 M and the activity was inhibited by glycolate, the inhibitor. The results strongly suggested the presence of a glyoxylate cycle in Leptospira. The possibility that the glyoxylate cycle plays an essential role in the synthesis of sugars, amino acids and other cellular components as an anaplerotic pathway of the tricarboxylic acid cycle in Leptospira was discussed.  相似文献   

9.
The activities of isocitrate lyase and malate synthase—the key enzymes in the glyoxylate cycle—were found to be fairly high in n-alkane-, acetate-, and propionate-grown cells of Candida tropicalis compared with those in glucose-grown cells. In fact, the results of immunochemical studies showed that the increases in the enzyme levels resulted from increases in the amounts of the enzyme proteins. But the increases in these enzyme activities were not always coincident with the appearance of peroxisomes. Isocitrate lyase and malate synthase were purified from a peroxisome-containing particulate fraction of alkane-grown cells and from whole cells grown on glucose, acetate and propionate. The respective enzymes showed no significant differences in immunochemical properties, specific activities, molecular masses of active forms and subunits, on patterns of limited proteolysis with proteases, but the malate synthases of alkane- and propionate- grown cells showed higher Km values for acetyl-CoA than the enzymes of glucose- and acetate- grown cells. The results indicated that the synthesis of the key enzymes in the glyoxylate cycle did not necessarily have to be coincident with the development of peroxisomes in this yeast.  相似文献   

10.
Acinetobacter calcoaceticus contains two forms of NADP+-dependent isocitrate dehydrogenases differing, among others, by their molecular weights and regulatory properties. The regulation of the high-molecular form of isocitrate dehydrogenase and of isocitrate lyase by organic acids, either belonging or related to the citrate and glyoxalate cycle, is investigated. While alpha-ketoglutarate and oxalacetate competitively inhibit the isocitrate dehydrogenase against Ds-isocitrate, glyoxylate and pyruvate were found to increase Vmax and to lower the KM value for Ds-isocitrate and NADP+. Simultaneous addition of oxalacetate and glyoxylate (not, however, addition of the nonenzymatically formed condensation product of both compound) nullified the activation of isocitrate dehydrogenase by glyoxylate, and potentiates the inhibitory effect of oxalacetate. Alpha-ketoglutarate, succinate, and phosphoenolpyruvate inhibit the isocitrate lyase in a noncompetitive fashion against DS-isocitrate; L-malate, oxalacetate and glyoxylate inhibit competitively. The intermediates of the citrate and glyoxylate cycle afford additive inhibition of the isocitrate lyase. The importance of organic acids of the citrate and glyoxylate cycle and of phosphoenolpyruvate for the regulation of the citrate and glyoxylate cycle at the level of isocitrate dehydrogenase and isocitrate lyase is discussed.  相似文献   

11.
Glyoxylate cycle in the rat liver: effect of vitamin D3 treatment   总被引:1,自引:0,他引:1  
Evidence for the glyoxylate cycle in the mammalian rat liver was sought. Activity of two unique glyoxylate cycle enzymes, isocitrate lyase and malate synthase, was found in rat liver homogenates. Vitamin D3 treatment of rachitic animals produced a five- and fourfold increase, respectively, in the activity of these enzymes. Vitamin D3 also increased the peroxisomal fatty acid oxidation and the accumulation of glycogen in liver slices in the presence of palmitate. These data suggest that the mammalian rat liver can convert fatty acid carbon to carbohydrate carbon directly.  相似文献   

12.
Abstract The subcellular location of the enzymes of purine breakdown in the yeast Candida famata , which grows on uric acid as sole carbon and nitrogen source, has been examined by subcellular fractionation methods. Uricase was confirmed as being peroxisomal, but the other three enzymes, allantoinase, allantoicase and ureidoglycollate lyase were shown to be cytosolic. In addition the peroxisomes harboured catalase and the key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase.  相似文献   

13.
Gene duplication represents an evolutionary mechanism for expanding metabolic potential. Here we analysed the evolutionary relatedness of isocitrate and methylisocitrate lyases, which are key enzymes of the glyoxylate and methylcitrate cycle respectively. Phylogenetic analyses imply that ancient eukaryotes acquired an isocitrate lyase gene from a prokaryotic source, but it was lost in some eukaryotic lineages. However, protists, oomycetes and most fungi maintained this gene and successfully integrated the corresponding enzyme into the glyoxylate cycle. A second gene, encoding a highly related enzyme, is present in fungi, but absent from other eukaryotes. This methylisocitrate lyase is specifically involved in propionyl-CoA degradation via the methylcitrate cycle. Although bacteria possess methylisocitrate lyases with a structural fold similar to that of isocitrate lyases, their sequence identity to fungal methylisocitrate lyases is low. Phylogenetic analyses imply that fungal methylisocitrate lyases arose from gene duplication of an ancient isocitrate lyase gene from the basidiomycete lineage. Mutagenesis of active-site residues of a bacterial and fungal isocitrate lyase, which have been predicted to direct the substrate specificity of iso- and methylisocitrate lyases, experimentally confirmed the possibility of direct evolution of methylisocitrate lyases from isocitrate lyases. Thus, gene duplication has increased the metabolic capacity of fungi.  相似文献   

14.
Oil is the primary seed storage reserve in many higher plants. After germination, this reserve is mobilized in order to support growth during early seedling development. The glyoxylate cycle is instrumental in this metabolic process. It allows acetyl-CoA derived from the breakdown of storage lipids to be used for the synthesis of carbohydrate. Recently, Arabidopsis mutants have been isolated that lack key glyoxylate cycle enzymes. An isocitrate lyase mutant has provided the first opportunity to test the biochemical and physiological functions of the glyoxylate cycle in vivo in an oilseed species.  相似文献   

15.
We describe the isolation and characterization of ICL1 from the rice blast fungus Magnaporthe grisea, a gene that encodes isocitrate lyase, one of the principal enzymes of the glyoxylate cycle. ICL1 shows elevated expression during development of infection structures and cuticle penetration, and a targeted gene replacement showed that the gene is required for full virulence by M. grisea. In particular, we found that the prepenetration stage of development, before entry into plant tissue, is affected by loss of the glyoxylate cycle. There is a delay in germination, infection-related development and cuticle penetration in Delta icl1 mutants. Recent reports have shown the importance of the glyoxylate cycle in the virulence of the human pathogenic fungus Candida albicans and the bacterial pathogen Mycobacterium tuberculosis. Our results indicate that the glyoxylate cycle is also important in this plant pathogenic fungus, demonstrating the widespread utility of the pathway in microbial pathogenesis.  相似文献   

16.
Both key enzymes for the glyoxylate cycle, isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2), were purified and characterized from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Whereas the former enzyme was copurified with the aconitase, the latter enzyme could be enriched to apparent homogeneity. Amino acid sequencing of three internal peptides of the isocitrate lyase revealed the presence of highly conserved residues. With respect to cofactor requirement and quarternary structure the crenarchaeal malate synthase might represent a novel type of this enzyme family. High activities of both glyoxylate cycle enzymes could already be detected in extracts of glucose grown cells and both increased about two-fold in extracts of acetate grown cells.  相似文献   

17.
The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes.  相似文献   

18.
Rhodospirillum rubrum is among the bacteria that can assimilate acetate in the absence of isocitrate lyase, the key enzyme of glyoxylate shunt. Previously we have suggested the functioning of a new anaplerotic cycle of acetate assimilation in this bacterium: citramalate cycle, where acetyl-CoA is oxidized to glyoxylate. This work has demonstrated the presence of all the key enzymes of this cycle in R. rubrum extracts: citramalate synthase catalyzing condensation of acetyl-CoA and pyruvate with the formation of citramalate, mesaconase forming mesaconate from L-citramalate, and the enzymes catalyzing transformation of propionyl-CoA + glyoxylate 3-methylmalyl-CoA ? mesaconyl-CoA. At the same time, R. rubrum synthesizes crotonyl-CoA carboxylase/reductase, which is the key enzyme of ethylmalonyl-CoA pathway discovered recently in Rhodobacter sphaeroides. Physiological differences between the citramalate cycle and the ethylmalonyl-CoA pathway are discussed.  相似文献   

19.
20.
Key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were identified in pupas of the butterfly Papilio machaon L. The activities of these enzymes in pupas were 0.056 and 0.108 unit per mg protein, respectively. Isocitrate lyase was purified by a combination of various chromatographic steps including ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Toyopearl, and gel filtration. The specific activity of the purified enzyme was 5.5 units per mg protein, which corresponded to 98-fold purification and 6% yield. The enzyme followed Michaelis-Menten kinetics (Km for isocitrate, 1.4 mM) and was competitively inhibited by succinate (Ki = 1.8 mM) and malate (Ki = 1 mM). The study of physicochemical properties of the enzyme showed that it is a homodimer with a subunit molecular weight of 68 +/- 2 kD and a pH optimum of 7.5 (in Tris-HCl buffer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号