共查询到20条相似文献,搜索用时 0 毫秒
1.
Distributed state-type simulations (based on modeling of individual bacteria as they move through a reactor system) predicted a greater sensitivity of enhanced biological phosphorus removal (EBPR) performance to endogenous degradation than did conventional, \"lumped\"-type simulations (based on average biomass compositions). Recent research has indicated that the variable hydraulic residence times experienced by individual microbial storage product accumulating bacteria in systems with completely mixed reactors tend to produce populations with diverse microbial storage product contents (distributed states). Endogenous degradation in EBPR systems is of particular interest because the polyphosphate accumulating organisms (PAOs) responsible for EBPR rely on the accumulation of three different storage products that may be endogenously degraded. Simulations indicated that as endogenous degradation rates of microbial storage products were increased, EBPR performance decreased more rapidly according to the distributed approach than according to the lumped approach. State profile analysis demonstrated that as these rates increased, the population fraction with depleted storage products also increased, and this tended to increase the error in calculated biokinetic rates by the lumped approach. Simulations based on recently reported endogenous rate coefficients also suggested large differences between distributed and lumped predictions of EBPR performance. These results demonstrated that endogenous decay processes may play a more important role in EBPR than predicted by the lumped approach. This suggests a need for further research to determine endogenous process rates, and for incorporation of this information to distributed-type simulators, as this should lead to improved accuracy of EBPR simulations. 相似文献
2.
Schuler AJ 《Biotechnology and bioengineering》2005,91(1):62-74
A MATLAB-based program was developed to simulate the distributions of states and behaviors of microbial storage product-accumulating bacteria in suspended growth systems. Currently available computer simulators of these systems predict dynamic behaviors by numerically solving differential biokinetic equations using average, or \"lumped\" system states (e.g., average microbial storage products concentrations). However, individual bacterial states are expected to diverge from average values, in part because individuals can have different hydrodynamic histories in terms of their residence times in upstream completely mixed flow reactors. The distributed state simulation program presented in this paper (DisSimulator 1.0) tracks individual bacteria as they move through a completely mixed reactor system. The program was evaluated for competition between polyphosphate-accumulating organisms (PAOs) and non-polyphosphate-accumulating heterotrophs in an enhanced biological phosphorus removal (EBPR) system for treatment of domestic wastewater. For identical systems and process conditions, simulations accounting for distributed states predicted larger anaerobic and aerobic solids residence time requirements for successful EBPR than did simulations using the lumped approach. One reason for this was that distributed simulations predicted large numbers of the PAOs were essentially inactive due to depleted or maximized storage product contents, while the lumped simulations predicted homogenous, 100% active PAO populations. Characteristic state profile shapes developed rapidly and were stable as total population numbers changed. Lumped state assumptions were demonstrated to produce large errors in predictions of EBPR system performance, and so consideration of distributed states may improve the accuracy of microbial storage products-based process simulations in systems with completely mixed hydrodynamics. 相似文献
3.
Seong-Jin Lim Ra Kyung Moon Woo Gi Lee Sunhoon Kwon Byung Geon Park Ho Nam Chang 《Biotechnology and Bioprocess Engineering》2000,5(6):441-448
Experimental work was carried out on nitrogen and phosphorus removal from real wastewater using a bench-scale SBR process.
The phosphorus removal was stable and the phosphorus concentration remaining in the reactor was maintained within 1.5 ppm,
regard-less of the addition of an external carbon source. In the case of nitrogen, an external carbon source was necessary
for denitrification. The effect on denitrification with the addition of various carbon sources, such as glucose, methanol,
acetate, and propionate, was also investigated. Acetate was found to be the most effective among those tested in this study.
When 100 ppm (theoretical oxygen demand) of sodium acetate was added, the average rate of denitrifiaction was 2.73 mg NO3−-N (g MLSS)−1 h−1, which wasca. 4 times higher than that with the addition of 200 ppm of methanol. The phosphorus and nitrogen concentrations were both
maintained within 1.5 ppm by the addition of an appropriate amount of a carbon source during a long-term operation of the
SBR. The mathematical modeling was performed using Monod kinetics, other microbial kinetics, mass balances, and stoichiometry.
The modeling was found to be useful for predicting the SBR operation and optimizing the HRT. 相似文献
4.
Volcke EI Sbarciog M Loccufier M Vanrolleghem PA Noldus EJ 《Biotechnology and bioengineering》2007,98(4):882-893
In this paper, the influence of microbial growth kinetics on the number and the stability of steady states for a nitrogen removal process is addressed. A two-step nitrification model is studied, in which the maximum growth rate of ammonium oxidizers is larger than the one of nitrite oxidizers. This model describes the behavior of a SHARON reactor for the treatment of wastewater streams with high ammonium concentrations. Steady states are identified through direct calculation using a canonical state space model representation, for several types of microbial kinetics. The stability of the steady states is assessed and the corresponding phase portraits are analyzed. Practical operation of a SHARON reactor aims at reaching ammonium conversion to nitrite while suppressing further conversion to nitrate. Regions in the input space are identified that result in this desired behavior, with only nitrite formation. It is demonstrated that not only the dilution rate plays a role, as is commonly known, but also the influent ammonium concentration. Besides, the type of microbial (inhibition) kinetics has a nonnegligible influence. While the results indicate that product inhibition does not affect the number of steady states of a (bio)reactor model, it is shown that substrate inhibition clearly yields additional steady states. Particular attention is devoted to the physical interpretation of these phenomena. 相似文献
5.
Biological wastewater treatment has been applied for more than a century to ameliorate anthropogenic damage to the environment.
But only during the last decade the use of molecular tools allowed to accurately determine the composition, and dynamics of
activated sludge and biofilm microbial communities. Novel, in many cases yet not cultured bacteria were identified to be responsible
for filamentous bulking and foaming as well as phosphorus and nitrogen removal in these systems. Now, methods are developed
to infer the in situ physiology of these bacteria. Here we provide an overview of what is currently known about the identity and physiology of
some of the microbial key players in activated sludge and biofilm systems.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
6.
Long Wang Xianqing Jia Lei Xu Jiahong Yu Suna Ren Yujie Yang Kaibin Wang Damar López-Arredondo Luis Herrera-Estrella Hans Lambers Keke Yi 《Plant biotechnology journal》2023,21(7):1373-1382
As a finite and non-renewable resource, phosphorus (P) is essential to all life and crucial for crop growth and food production. The boosted agricultural use and associated loss of P to the aquatic environment are increasing environmental pollution, harming ecosystems, and threatening future global food security. Thus, recovering and reusing P from water bodies is urgently needed to close the P cycle. As a natural, eco-friendly, and sustainable reclamation strategy, microalgae-based biological P recovery is considered a promising solution. However, the low P-accumulation capacity and P-removal efficiency of algal bioreactors restrict its application. Herein, it is demonstrated that manipulating genes involved in cellular P accumulation and signalling could triple the Chlamydomonas P-storage capacity to ~7% of dry biomass, which is the highest P concentration in plants to date. Furthermore, the engineered algae could recover P from wastewater almost three times faster than the unengineered one, which could be directly used as a P fertilizer. Thus, engineering genes involved in cellular P accumulation and signalling in microalgae could be a promising strategy to enhance P uptake and accumulation, which have the potential to accelerate the application of algae for P recovery from the water body and closing the P cycle. 相似文献
7.
8.
Ranganathan Budhi Venkatesan 《International journal of phytoremediation》2019,21(8):816-820
AbstractThe present study investigates the suitability of growing Dicloster acuatus MH013435 and Kalenjinia gelatinosa MH012185 in Garcinia cambogia washwater for biomass production and nutrient removal. In recent years, the wastewater effluent treatment with microalgae is gaining importance since it serves multiple purposes including CO2 sequestration, production of biofuel feedstock and value-added biochemicals in addition to wastewater treatment. Contaminated washwater is generated at a significant quantity during extraction of hydroxycitric acid from G. cambogia and it represents a serious environmental concern when discharged without proper processing. However, this G. cambogia washwater can be used as a low-cost source of nutrients for microalgal growth. The two microalgal species D. acuatus MH013435 and K. gelatinosa MH012185 demonstrated robust growth in washwater and achieved maximum biomass concentration of 0.68 and 0.63?g/L dry weight. The nitrate was removed to an extent of 98.5 and 99.6% whereas chloride removal was 72 and 80.5%, sulfate concentration got reduced by 98 and 98.7% and phosphate got reduced to 95 and 92% for D. acuatus MH013435 and K. gelatinosa MH012185, respectively. The results indicate the suitability of D. acuatus MH013435 and K. gelatinosa MH012185 in treating G. cambogia washwater with efficient nutrient removal. 相似文献
9.
水培经济植物对污水中磷的吸收利用及去除效果 总被引:13,自引:0,他引:13
对13种经济植物在污水水培条件下净化污水中磷的能力进行了研究。结果表明,黑麦草(Lolium multiflorum)、水芹(Oenanthe stolonifera)、莴苣(Lactuca sativavar.angustana)、酸模(Poly-gonum iapathifolium)、生菜(Lactuca sativa)、小葱(Allium ascalonicum)、五月慢青菜(Brassica chinen-sis)等品种具有较高的净化能力。在4个半月的水培中,TP的去除量分别达到10.27、10.35、6.5~6.896、.91、5.72、5.46和6.19 g.m-2;TP的去除率分别达到94.5%、95.2%、93.6%~99.3%、99.6%、99.5%、95%和89.2%。植物吸收作用是最主要的污水磷去除机制,沉淀在污水磷净化中的作用较小。污水中磷的去除与植物的生长期密切相关。黑麦草、水芹等7种植物适宜作为苏南地区冬季化粪池污水水培植物。 相似文献
10.
普通小球藻对养殖污水脱氮除磷的效果研究 总被引:1,自引:0,他引:1
随着我国养殖业的不断发展,养殖污水排放量的日益增加,养殖污水的高氮、磷含量导致水体富营养化问题日趋严重。小球藻是光能自养生物,能有效同化氮、磷,使污水中的氮、磷减少。本研究通过在实验室模拟不同氮、磷含量的养殖污水环境,分析小球藻对氮、磷的去除效果;在此基础上,用小球藻处理某养殖场污水;并联合膨润土与小球藻,探究两者脱氮除磷的协同作用能力及膨润土对小球藻细胞沉降的效果。结果表明,小球藻对模拟污水的氨氮去除率可达80%,对磷酸根的最高去除率接近100%;对养殖污水中的氮、磷也有一定的去除效果;但养殖污水成分复杂,小球藻的生长被抑制。膨润土与小球藻的结合,能够提高污水中的氮磷去除率并帮助藻细胞快速沉降,为污水处理后藻细胞的收集处理提供了有效方法。 相似文献
11.
12.
13.
14.
Anaerobic treatment of sulphate-rich wastewaters 总被引:6,自引:0,他引:6
Until recently, biological treatment of sulphate-rich wastewater was rather unpopular because of the production of H2S under anaerobic conditions. Gaseous and dissolved sulphides cause physical-chemical (corrosion, odour, increased effluent chemical oxygen demand) or biological (toxicity) constraints, which may lead to process failure. Anaerobic treatment of sulphate-rich wastewater can nevertheless be applied successfully provided a proper treatment strategy is selected. The strategies currently available are discussed in relation to the aim of the treatment: i) removal of organic matter, ii) removal of sulphate or iii) removal of both. Also a whole spectrum of new biotechnological applications (removal of organic chemical oxygen demand, sulphur, nitrogen and heavy metals), recently developed based on a better insight in sulphur transformations, are discussed. 相似文献
15.
生物脱氮是污水处理厂的核心,掌握生物脱氮过程相关微生物代谢特性,对于探索微生物资源和提高污水处理厂脱氮性能具有重要意义。近年来,分子生物学方法不断发展和改进,已被广泛应用于揭示脱氮微生物群落多样性、组成结构和潜在功能等方面,大幅提升了研究者们对污水生物脱氮系统中微生物,尤其是不可培养微生物的代谢机理、抑制调控原理及新型生物脱氮工艺途径的认识。本文对流行的分子生物学方法(16S rRNA基因测序、实时荧光定量PCR技术、宏基因组学、宏转录组学、宏蛋白质组学和代谢组学)进行了介绍,综述了其在硝化细菌、反硝化细菌、完全氨氧化细菌、厌氧氨氧化细菌、厌氧铁氨氧化细菌、硫酸盐型厌氧氨氧化细菌及亚硝酸盐/硝酸盐型厌氧甲烷氧化微生物等方面的研究进展,阐明了这些氮素转化微生物在氮循环过程的代谢途径和酶促反应,并从标准测定方法构建、不同方法的联用及跨学科结合和检测方法的简易化这3个方面展望了分子生物学方法的技术突破及其在污水生物处理系统中的应用前景。本综述从系统角度全面认识脱氮微生物群落及其结构,为未来污水处理生物脱氮微生物的研究提供了新方向。 相似文献
16.
Sylvia Toet Lucy H. F. A. Huibers Richard S. P. Van Logtestijn Jos T. A. Verhoeven 《Hydrobiologia》2003,501(1-3):29-44
Seasonal variation in denitrification and major factors controlling this process were determined in sediment, microbial communities attached to plant shoots (periphyton) and in the water of a Phragmites and an Elodea-dominated stand of a constructed wetland system between May 1997 and February 1998. The wetland was supplied with effluent from a sewage treatment plant. The denitrification rate in periphyton on plants shoots (expressed per shoot area) was always considerably higher than in the sediment and varied with the chlorophyll-a content of the periphyton in the course of the year. The algae in the periphyton provided attachment surfaces and probably also organic compounds to the denitrifying bacteria. Decreases in periphyton biomass and denitrification rate in the Phragmites and Elodea-dominated stands during the growing season were associated with enhanced shading by Phragmites shoots or a floating layer of macro-algae and Lemna spp., respectively. Light availability and the denitrification rate of periphyton increased again after the Phragmites shoots were cut in October. Nitrate appeared to limit the denitrification rate in the sediment. Periphyton denitrification rates were mostly lower on Elodea shoots than on Phragmites shoots, in spite of the higher living algal biomass on Elodea shoots. This difference was associated with lower nitrate concentrations in the Elodea-dominated stand. In the two stands, the daily denitrification rates in periphyton on shoots of Phragmites australis (44.4–121 mg N m–2 stand area d–1) and Elodea nuttallii (14.8–33.1 mg N m–2 d–1) were clearly more important than rates in the sediment (0.5–25.5 mg N m–2 d–1) or the water (0.4–3.9 mg N m–2 d–1). The presence of few bacteria attachment sites or low organic carbon availability possibly resulted in low denitrification rates in the water. Denitrification appeared to be a major process in nitrate removal from the through-flowing water in this wetland system. 相似文献
17.
底栖藻类对氮、磷去除效果研究 总被引:9,自引:0,他引:9
通过模拟实验探讨了污水处理中底栖藻类的群落结构、生长状况及其对氮(N)、磷(P)的去除能力。实验期间,被试藻类(丝状绿藻占优势)在污水中生长良好,培养5 d后收获的藻类生物量可达14.36±0.72 g;污水总氮(TN)、总磷(TP)含量分别由36.97±0.26 m g.L-1、2.88±0.02 m g.L-1降至1.44±0.09 m g.L-1、0.07±0.01 m g.L-1,对氨氮(NH4-N)和硝氮(NO3-N)的去除率亦达95%以上;藻体总凯氏氮(TKN)和TP含量分别为5.75±0.20%和1.5±0.22%。实验证明,底栖藻类对污水中的N、P营养有明显的去除效果,在污水的三级处理以及水体富营养化的防治方面具有较大的应用潜力。 相似文献
18.
A pilot‐scale hybrid wetland system was constructed for the removal of fluoride and arsenic from synthetic wastewater. After five months of operation, the fluoride and arsenic removal rate were at the value of 65 % and 90 %, respectively. Through calculation, the accumulation of fluoride in plants only accounted for 1.63 % of the accumulation in substrates, and the accumulation of arsenic in plants accounted for 3.3 % of that in substrates. Both the accumulation of fluoride and arsenic in plants were much higher in roots than that in leaves. And for substrates, the accumulation in the first layer was higher than the second layer. The changes of microbial community in the substrate of the wetland during the operation were also analyzed to investigate the effects of operating condition on the microbial community and to study the role of microorganism on the removal of fluoride and arsenic. The results showed that the relative abundance of Firmicutes reduced, while the relative abundance of Proteobacteria increased, indicating that the fluoride and arsenic in solution had a great influence on the microbial community. Findings of this study suggest that the hybrid constructed wetland system may be a promising process for the removal of fluoride and arsenic from synthetic wastewater. 相似文献
19.
Color removal of real textile wastewater by sequential anaerobic and aerobic reactors 总被引:2,自引:0,他引:2
Textile wastewater from the Pusan Dyeing Industrial Complex (PDIC) was treated utilizing a two-stage continuous system, composed
of an upflow anaerobic sludge blanket reactor and an activated sludge reactor. The effects of color and organic loading rates
were studied by varying the hydraulic retention time and influent glucose concentration. The maximum color load to satisfy
the legal discharge limit of color intensity in Korea (400 ADMI, unit of the American Dye Manufacturers Institute) was estimated
to be 2,700 ADMI·L−1 day−1. This study indicates that the two-stage anaerobic/aerobic reaction system is potentially useful in the treatment of textile
wastewater. 相似文献
20.
The microalgal species Chlorella pyrenoidosa was cultivated in synthetic wastewater of initial chemical oxygen demand (COD), nitrate, and phosphate concentrations of 5000, 100, and 40 mg/L, respectively. The aim of the study was to find out the tolerance of microalgae to different COD concentrations and the extent of COD degradation at those concentrations. Three dilutions of wastewater (initial COD concentrations 5000, 3000, and 1000 mg/L) and three inoculum sizes (0.1, 0.2, and 0.3 g/L) were considered for the study. The experimental parameters such as total organic carbon, total inorganic carbon, COD, optical density, total solids, nitrate, and phosphate were measured on a daily basis. Biodegradation kinetics was determined for all cases using first-order reaction and Monod degradation equations. Optimal results showed that up to 90% reduction in TOC was obtained for 1000 COD wastewater while only 38% reduction in total organic carbon (TOC) was achieved for 5000 COD wastewater. Over 95% reduction in nitrate and nearly 90% removal of phosphate were obtained with the lowest microalgal inoculum concentration (i.e., 0.1 g/L) for all COD dilutions. This study showed that microalgal species C. pyrenoidosa can successfully degrade the organic carbon source (i.e., acetate) with significant removal efficiencies for nitrate and phosphate. 相似文献