首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Malyan  A.N. 《Photosynthetica》2018,56(4):1365-1369
Photosynthetica - Dependence of ATP hydrolysis kinetics by the chloroplast coupling factor (CF1) on medium viscosity was studied at varying temperatures. For samples with oxidized and reduced CF1...  相似文献   

2.
The enzyme F1-adenosine triphosphatase (ATPase) is a molecular motor that converts the chemical energy stored in the molecule adenosine triphosphate (ATP) into mechanical rotation of its gamma-subunit. During steady-state catalysis, the three catalytic sites of F1 operate in a cooperative fashion such that at every instant each site is in a different conformation corresponding to a different stage along the catalytic cycle. Notwithstanding a large amount of biochemical and, recently, structural data, we still lack an understanding of how ATP hydrolysis in F1 is coupled to mechanical motion and how the catalytic sites achieve cooperativity during rotatory catalysis. In this publication, we report combined quantum mechanical/molecular mechanical simulations of ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase. Our simulations reveal a dramatic change in the reaction energetics from strongly endothermic in betaTP to approximately equienergetic in betaDP. The simulations identify the responsible protein residues, the arginine finger alphaR373 being the most important one. Similar to our earlier study of betaTP, we find a multicenter proton relay mechanism to be the energetically most favorable hydrolysis pathway. The results elucidate how cooperativity between catalytic sites might be achieved by this remarkable molecular motor.  相似文献   

3.
F(1)-ATPase catalyses ATP hydrolysis and converts the cellular chemical energy into mechanical rotation. The hydrolysis reaction in F(1)-ATPase does not follow the widely believed Michaelis-Menten mechanism. Instead, the hydrolysis mechanism behaves in an ATP-dependent manner. We develop a model for enzyme kinetics and hydrolysis cooperativity of F(1)-ATPase which involves the binding-state changes to the coupling catalytic reactions. The quantitative analysis and modeling suggest the existence of complex cooperative hydrolysis between three different catalysis sites of F(1)-ATPase. This complexity may be taken into account to resolve the arguments on the binding change mechanism in F(1)-ATPase.  相似文献   

4.
The hydrolysis of 0.3 microM [alpha,gamma-32P]ATP by 1 microM F1-ATPase isolated from the plasma membranes of Escherichia coli has been examined in the presence and absence of inorganic phosphate. The rate of binding of substoichiometric substrate to the ATPase is attenuated by 2 mM phosphate and further attenuated by 50 mM phosphate. Under all conditions examined, only 10-20% of the [alpha,gamma-32P]ATP that bound to the enzyme was hydrolyzed sufficiently slowly to be examined in cold chase experiments with physiological concentrations of non-radioactive ATP. These features differ from those observed with the mitochondrial F1-ATPase. The amount of bound substrate in equilibrium with bound products observed in the slow phase which was subject to promoted hydrolysis by excess ATP was not affected by the presence of phosphate. Comparison of the fluxes of enzyme-bound species detected experimentally in the presence of 2 mM phosphate with those predicted by computer simulation of published rate constants determined for uni-site catalysis (Al-Shawi, M.D., Parsonage, D. and Senior, A.E. (1989) J. Biol. Chem. 264, 15376-15383) showed that hydrolysis of substoichiometric ATP observed experimentally was clearly biphasic. Less than 20% of the substoichiometric ATP added to the enzyme was hydrolyzed according to the published rate constants which were calculated from the slow phase of product release in the presence of 1 mM phosphate. The majority of the substoichiometric ATP added to the enzyme was hydrolyzed with product release that was too rapid to be detected by the methods employed in this study, indicating again that the F1-ATPase from E. coli and bovine heart mitochondria hydrolyze substoichiometric ATP differently.  相似文献   

5.
Gao YQ  Yang W  Karplus M 《Cell》2005,123(2):195-205
Many essential functions of living cells are performed by nanoscale protein motors. The best characterized of these is F(o)F1-ATP synthase, the smallest rotary motor. This rotary motor catalyzes the synthesis of ATP with high efficiency under conditions where the reactants (ADP, H2PO4(-)) and the product (ATP) are present in the cell at similar concentrations. We present a detailed structure-based kinetic model for the mechanism of action of F1-ATPase and demonstrate the role of different protein conformations for substrate binding during ATP synthesis and ATP hydrolysis. The model shows that the pathway for ATP hydrolysis is not simply the pathway for ATP synthesis in reverse. The findings of the model also explain why the cellular concentration of ATP does not inhibit ATP synthesis.  相似文献   

6.
The aurovertin-F1 complex was used to monitor fluorescence changes of the mitochondrial adenosine triphosphatase during multi- and uni-site ATP hydrolysis. It is known that the fluorescence intensity of the complex is partially quenched by addition of ATP or Mg2+ and enhanced by ADP (Chang, T., and Penefsky, H. S. (1973) J. Biol. Chem. 248, 2746-2754). In the present study low concentrations of ATP (0.03 mM) induced a marked fluorescence quenching which was followed by a fast fluorescence recovery. This recovery could be prevented by EDTA or an ATP regenerating system. The rate of ATP hydrolysis by the aurovertin-F1 complex and the reversal of the ATP-induced fluorescence quenching were determined in these various conditions. ITP hydrolysis also resulted in fluorescence quenching that was followed by a recovery of fluorescence intensity. Under conditions for single site catalysis, fluorescence quenching was observed upon the addition of ATP. This strongly indicates that fluorescence changes in the aurovertin-F1 complex are due to the binding and hydrolysis of ATP at a catalytic site. Therefore the resulting ADP molecule bound at this catalytic site possibly induces the fluorescence recovery observed.  相似文献   

7.
A Robinson  B Austen 《FEBS letters》1987,212(1):63-67
Under the conditions of ATP regeneration and molar excess of nucleotide-depleted F1-ATPase the enzyme catalyses steady-state ATP hydrolysis by the single catalytic site. Values of Km = 10(-8) M and Vm = 0.05 s-1 for the single-site catalysis have been determined. ADP release limits single-site ATP hydrolysis under steady-state conditions. The equilibrium constant for ATP hydrolysis at the F1-ATPase catalytic site is less than or equal to 0.7.  相似文献   

8.
Initial rates of succinate-dependent ATP synthesis catalyzed by submitochondrial particles from bovine heart substoichiometrically coupled with oligomycin were found to have hyperbolic dependencies on contents of Mg x ADP, free Mg2+, and phosphate. The results suggest that Mg x ADP complex and free phosphate are true substrates of the enzyme; and an unordered ternary complex of Fo x F1-ATPase, Mg x ADP, and phosphate is generated during the catalysis. The presence of free Mg2+ is required for the reaction. Mg2+ was a noncompetitive activator of ATP synthesis relative to Mg x ADP and a competitive activator relative to phosphate. The decrease in steady-state values of Deltamu(H)+ (by the inhibition of succinate oxidase with malonate) results in the decreased value of Vmax and in a slight decrease in Km for the substrates and Mg2+ without changes in affinity for the substrates. Based on these results, a kinetic scheme of ATP synthesis is proposed.  相似文献   

9.
10.
Using molecular dynamics, we study the unbinding of ATP in F(1)-ATPase from its tight binding state to its weak binding state. The calculations are made feasible through use of interpolated atomic structures from Wang and Oster [Nature 1998, 396: 279-282]. These structures are applied to atoms distant from the catalytic site. The forces from these distant atoms gradually drive a large primary region through a series of sixteen equilibrated steps that trace the hinge bending conformational change in the beta-subunit that drives rotation of gamma-subunit. As the rotation progresses, we find a sequential weakening and breaking of the hydrogen bonds between the ATP molecule and the alpha- and beta-subunits of the ATPase. This finding agrees with the "binding-zipper" model [Oster and Wang, BIOCHIM: Biophys. Acta 2000, 1458: 482-510.] In this model, the progressive formation of the hydrogen bonds is the energy source driving the rotation of the gamma-shaft during hydrolysis. Conversely, the corresponding sequential breaking of these bonds is driven by rotation of the shaft during ATP synthesis. Our results for the energetics during rotation suggest that the nucleotide's coordination with Mg(2+) during binding and release is necessary to account for the observed high efficiency of the motor.  相似文献   

11.
To couple the energy present in the electrochemical proton gradient, established across the mitochondrial membrane by the respiratory chain, to the formation of ATP from ADP and Pi, ATP-synthase goes through a sequence of coordinated conformational changes of its major subunits (alpha, beta). These changes are induced by the rotation of the gamma subunit driven by the translocation of protons through the c subunit of the membrane portion of the enzyme. During this process, the F1-portion of the ATP-synthase adopts at least two major conformations depending on the occupancy of the beta subunits: one with two nucleotides, the other with three. In the two-nucleotide structure, the empty beta subunit adopts an open conformation that is highly different from the other conformations of beta subunits: tight, loose and closed. The three-dimensional structures of the F1-ATPase in each of these two major conformations provide a framework for understanding the mechanism of energy coupling by the enzyme. The energetics associated with two different models of the reaction steps, analysed using molecular dynamics calculations, show that three-nucleotide intermediates do not occur in configurations with an open beta subunit; instead, they are stabilized by completing a jaw-like motion that closes the beta subunit around the nucleotide. Consequently, the energy driven, major conformational change takes place with the beta subunits in the tight, loose and closed conformation.  相似文献   

12.
13.
14.
F1-ATPase is a rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α3β3-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the β-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F1 rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F1 molecules that carried a bead duplex on the γ-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 × 107 M−1s−1. A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F1 produced the same torque of ~40 pN·nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.  相似文献   

15.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

16.
The F0F1-ATPase of the inner mitochondrial membrane catalyzes the conversion of a proton electrochemical energy into the chemical bond energy of ATP (Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E.C. (1977) Annu. Rev. Biochem. 46, 955-1026). To assess the role of the membrane potential (delta psi) in this process and to study the effect of very short pulses on ATP synthesis, we employed a high voltage pulsation method (Kinosita, K., and Tsong, T.Y. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 1923-1927) to induce a delta psi of controlled magnitude and duration in a suspension of submitochondrial particles and F0F1-ATPase vesicles. Cyanide-treated submitochondrial particles were exposed to electric pulses of 10-30 kV/cm of magnitude (generating a peak delta psi of 150-450 mV) and 1-100 microseconds duration. Net [32P]ATP synthesis from [32P]Pi and ADP was observed with maximal values of 410 pmol/mg X pulse for a 30 kV/cm-100-microseconds pulse. This corresponds to a yield of 10-12 mol of ATP per mol of F0F1 complex per pulse. As many as 4 nmol/mg were produced after pulsing the same sample 8 times. By varying the ionic strength of the suspending medium, and consequently the pulse width, it is clearly shown that the synthesis was electrically driven and did not correlate with Joule heating of the sample. Titrations using specific inhibitors and ionophores were performed. The voltage-induced ATP synthesis was 50% inhibited by 0.11 microgram/mg of oligomycin and 2.4 nmol/mg of N,N'-dicyclohexylcarbodiimide. Ionophores and uncouplers had varying degrees of inhibition. The dependence of ATP synthesis on pulse width was nonlinear, exhibiting a threshold at 10 microseconds and a biphasic behavior above this value. Isolated F0F1-ATPase reconstituted into asolectin vesicles also synthesized ATP when pulsed with electric fields. A 35 kV/cm pulse induced the synthesis of 115 pmol of ATP per mg of protein, which corresponds to approximately 0.34 mol of ATP per mol of F0F1-ATPase. This synthesis was also sensitive to oligomycin and dicyclohexylcarbodiimide. The possibility of turnover of the ATPase in microseconds is considered.  相似文献   

17.
F1-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F1-ATPase over the temperature range 4-50°C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 × 106 M−1 s−1 at 4°C to 4.3 × 107 M−1 s−1 at 40°C, whereas the torque estimated at 2 mM ATP remained around 40 pN·nm over 4-50°C. The rotation was stepwise at 4°C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4-65°C. F1-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30°C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile.  相似文献   

18.
19.
Mitochondrial F(1)F(0)-ATPase normally synthesizes ATP in the heart, but under ischemic conditions this enzyme paradoxically causes ATP hydrolysis. Nonselective inhibitors of this enzyme (aurovertin, oligomycin) inhibit ATP synthesis in normal tissue but also inhibit ATP hydrolysis in ischemic myocardium. We characterized the profile of aurovertin and oligomycin in ischemic and nonischemic rat myocardium and compared this with the profile of BMS-199264, which only inhibits F(1)F(0)-ATP hydrolase activity. In isolated rat hearts, aurovertin (1-10 microM) and oligomycin (10 microM), at concentrations inhibiting ATPase activity, reduced ATP concentration and contractile function in the nonischemic heart but significantly reduced the rate of ATP depletion during ischemia. They also inhibited recovery of reperfusion ATP and contractile function, consistent with nonselective F(1)F(0)-ATPase inhibitory activity, which suggests that upon reperfusion, the hydrolase activity switches back to ATP synthesis. BMS-199264 inhibits F(1)F(0) hydrolase activity in submitochondrial particles with no effect on ATP synthase activity. BMS-199264 (1-10 microM) conserved ATP in rat hearts during ischemia while having no effect on preischemic contractile function or ATP concentration. Reperfusion ATP levels were replenished faster and necrosis was reduced by BMS-199264. ATP hydrolase activity ex vivo was selectively inhibited by BMS-199264. Therefore, excessive ATP hydrolysis by F(1)F(0)-ATPase contributes to the decline in cardiac energy reserve during ischemia and selective inhibition of ATP hydrolase activity can protect ischemic myocardium.  相似文献   

20.
The rate of inactivation of the mitochondrial F1-ATPase by dicyclohexylcarbodiimide is slowed by concentrations of chlorpromazine, dibucaine, or tetracaine which have been shown by others (B. Chazotte, G. Vanderkooi, and D. Chignell (1982)Biochim. Biophys. Acta680, 310–316) to inhibit the hydrolytic reaction catalyzed by the enzyme. The order of effectiveness of the drugs as protectors of the enzyme against inactivation by dicyclohexylcarbodiimide is: chlorpromazine > dibucaine > tetracaine. Examination of the steady state kinetics showed the chlorpromazine inhibits the ATPase competitively at concentrations up to 18.5 μM while complex kinetic behavior is exhibited at chlorpromazine concentrations from 25–50 μM. These results suggest that the drugs inhibit the F1-ATPase by interacting with the catalytic site of the enzyme and not by promoting its dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号