首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apicomplexan parasites are an ancient group of protozoan parasites that includes several significant pathogens of humans and animals. To target and invade host cells they use a unique form of actin-based motility, called gliding motility. At the centre of the molecular motor that underlies this unique mode of locomotion are short, highly dynamic actin filaments. Recent molecular work, along with the availability of completed genomes for several Apicomplexa, has highlighted unique features of parasite actin and its regulation - features that might provide new ways to block motility and, consequently, prevent infection and disease.  相似文献   

2.
Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.  相似文献   

3.
Although many of the regulators of actin assembly are known, we do not understand how these components act together to organize cell shape and movement. To address this question, we analyzed the spatial dynamics of a key actin regulator—the Scar/WAVE complex—which plays an important role in regulating cell shape in both metazoans and plants. We have recently discovered that the Hem-1/Nap1 component of the Scar/WAVE complex localizes to propagating waves that appear to organize the leading edge of a motile immune cell, the human neutrophil. Actin is both an output and input to the Scar/WAVE complex: the complex stimulates actin assembly, and actin polymer is also required to remove the complex from the membrane. These reciprocal interactions appear to generate propagated waves of actin nucleation that exhibit many of the properties of morphogenesis in motile cells, such as the ability of cells to flow around barriers and the intricate spatial organization of protrusion at the leading edge. We propose that cell motility results from the collective behavior of multiple self-organizing waves.  相似文献   

4.
5.
Abiomimetic motility assay is used to analyze the mechanism of force production by site-directed polymerization of actin. Polystyrene microspheres, functionalized in a controlled fashion by the N-WASP protein, the ubiquitous activator of Arp2/3 complex, undergo actin-based propulsion in a medium that consists of five pure proteins. We have analyzed the dependence of velocity on N-WASP surface density, on the concentration of capping protein, and on external force. Movement was not slowed down by increasing the diameter of the beads (0.2 to 3 microm) nor by increasing the viscosity of the medium by 10(5)-fold. This important result shows that forces due to actin polymerization are balanced by internal forces due to transient attachment of filament ends at the surface. These forces are greater than the viscous drag. Using Alexa488-labeled Arp2/3, we show that Arp2/3 is incorporated in the actin tail like G-actin by barbed end branching of filaments at the bead surface, not by side branching, and that filaments are more densely branched upon increasing gelsolin concentration. These data support models in which the rates of filament branching and capping control velocity, and autocatalytic branching of filament ends, rather than filament nucleation, occurs at the particle surface.  相似文献   

6.
Actin-based cell motility is a complex process involving a dynamic, self-organizing cellular system. Experimental problems initially limited our understanding of this type of motility, but the use of a model system derived from a bacterial pathogen has led to a breakthrough. Now, all the molecular components necessary for dynamic actin self-organization and motility have been identified, setting the stage for future mechanistic studies.  相似文献   

7.
Cells move by a dynamical reorganization of their cytoskeleton, orchestrated by a cascade of biochemical reactions directed to the membrane. Designed objects or bacteria can hijack this machinery to undergo actin-based propulsion inside cells or in a cell-like medium. These objects can explore the dynamical regimes of actin-based propulsion, and display different regimes of motion, in a continuous or periodic fashion. We show that bead movement can switch from one regime to the other, by changing the size of the beads or the surface concentration of the protein activating actin polymerization. We experimentally obtain the state diagram of the bead dynamics, in which the transitions between the different regimes can be understood by a theoretical approach based on an elastic force opposing a friction force. Moreover, the experimental characteristics of the movement, such as the velocity and the characteristic times of the periodic movement, are predicted by our theoretical analysis.  相似文献   

8.
Summary
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular parasite that invades and multiplies within diverse eukaryotic cell types. An essential pathogenicity determinant is its ability to move in the host cell cytoplasm and to spread within tissues by directly passing from one cell to another. The propulsive force for intracellular movement is thought to be generated by continuous actin assembly at the rear end of the bacterium. Moving bacteria that reach the plasma membrane induce the formation of long membranous protrusions that are internalized by neighbouring cells, thus mediating the spread of infection. The unrelated pathogens Shigella and Rickettsia use a similar process of actin-based motility to disseminate in infected tissues. This review focuses on the bacterial and cellular factors involved in the actin-based motility of L monocytogenes.  相似文献   

9.
Villin is an actin-binding protein localized to intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a calcium-dependent manner. Although villin is not necessary for the bundling of F-actin in vivo, it is important for the reorganization of the actin cytoskeleton elicited by stress during both physiological and pathological conditions (Ferrary et al., 1999). These data suggest that villin may be involved in actin cytoskeleton remodeling necessary for many processes requiring cellular plasticity. Here, we study the role of villin in hepatocyte growth factor (HGF)-induced epithelial cell motility and morphogenesis. For this purpose, we used primary cultures of enterocytes derived from wild-type and villin knock-out mice and Madin-Darby canine kidney cells, expressing villin in an inducible manner. In vitro, we show that epithelial cell lysates from villin-expressing cells induced dramatic, calcium-dependent severing of actin filaments. In cell culture, we found that villin-expressing cells exhibit enhanced cell motility and morphogenesis upon HGF stimulation. In addition, we show that the ability of villin to potentiate HGF-induced actin reorganization occurs through the HGF-activated phospholipase Cgamma signaling pathway. Collectively, these data demonstrate that villin acts as a regulator of HGF-induced actin dynamics.  相似文献   

10.
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.  相似文献   

11.
Listeria monocytogenes is a master of mimicry that uses the host cell actin system both to move within the cytoplasm of infected cells and for cell-to-cell spread. Recent studies of Listeria and similarly acting pathogens have generated leaps in our understanding of the actin-based force producing machinery. This machinery is essential for most motile properties of cells, not least for cell migration. In a minimal configuration, it consists of the Arp2/3-complex, Ena-VASP proteins, cofilin, capping protein and a nucleation-promoting factor. In this review, we discuss current models of pseudopodial protrusions and describe how the road to more complex models lies open and is already paved by recent studies using Listeria-based biomimetic motility assays.  相似文献   

12.
13.
The intracellular movement of the bacterial pathogen Listeria monocytogenes has helped identify key molecular constituents of actin-based motility (recent reviews ). However, biophysical as well as biochemical data are required to understand how these molecules generate the forces that extrude eukaryotic membranes. For molecular motors and for muscle, force-velocity curves have provided key biophysical data to distinguish between mechanistic theories. Here we manipulate and measure the viscoelastic properties of tissue extracts to provide the first force-velocity curve for Listeria monocytogenes. We find that the force-velocity relationship is highly curved, almost biphasic, suggesting a high cooperativity between biochemical catalysis and force generation. Using high-resolution motion tracking in low-noise extracts, we find long trajectories composed exclusively of molecular-sized steps. Robust statistics from these trajectories show a correlation between the duration of steps and macroscopic Listeria speed, but not between average step size and speed. Collectively, our data indicate how the molecular properties of the Listeria polymerization engine regulate speed, and that regulation occurs during molecular-scale pauses.  相似文献   

14.
15.
The Wiskott-Aldrich syndrome related protein WAVE2 is implicated in the regulation of actin-cytoskeletal reorganization downstream of the small Rho GTPase, Rac. We inactivated the WAVE2 gene by gene-targeted mutation to examine its role in murine development and in actin assembly. WAVE2-deficient embryos survived until approximately embryonic day 12.5 and displayed growth retardation and certain morphological defects, including malformations of the ventricles in the developing brain. WAVE2-deficient embryonic stem cells displayed normal proliferation, whereas WAVE2-deficient embryonic fibroblasts exhibited severe growth defects, as well as defective cell motility in response to PDGF, lamellipodium formation and Rac-mediated actin polymerization. These results imply a non-redundant role for WAVE2 in murine embryogenesis and a critical role for WAVE2 in actin-based processes downstream of Rac that are essential for cell movement.  相似文献   

16.
Diverse intracellular pathogens subvert the host actin-polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive 'comet tails' that consist of long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails is nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks. However, a second bacterial gene, sca2, was recently implicated in actin-tail formation by R. rickettsii. Here, we demonstrate that Sca2 is a bacterial actin-assembly factor that functionally mimics eukaryotic formin proteins. Sca2 nucleates unbranched actin filaments, processively associates with growing barbed ends, requires profilin for efficient elongation, and inhibits the activity of capping protein, all properties shared with formins. Sca2 localizes to the Rickettsia surface and is sufficient to promote the assembly of actin filaments in cytoplasmic extract. These results suggest that Sca2 mimics formins to determine the unique organization of actin filaments in Rickettsia tails and drive bacterial motility, independently of host nucleators.  相似文献   

17.
Inhalation of anthrax causes fatal bacteremia, indicating a meager host immune response. We previously showed that anthrax lethal toxin (LT) paralyzes neutrophils, a major component of innate immunity. Here, we have found that LT also inhibits actin-based motility of the intracellular pathogen Listeria monocytogenes. LT inhibition of actin assembly is mediated by blockade of Hsp27 phosphorylation, and can be reproduced by treating cells with the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580. Nonphosphorylated Hsp27 inhibits Listeria actin-based motility in cell extracts, and binds to and sequesters purified actin monomers. Phosphorylation of Hsp27 reverses these effects. RNA interference knockdown of Hsp27 blocks LT inhibition of Listeria actin-based motility. Rescue with wild-type Hsp27 accelerates Listeria speed in knockdown cells, whereas introduction of Hsp27 mutants incapable of phosphorylation or dephosphorylation causes slowing down. We propose that Hsp27 facilitates actin-based motility through a phosphorylation cycle that shuttles actin monomers to regions of new actin filament assembly. Our findings provide a previously unappreciated mechanism for LT virulence, and emphasize a central role for p38 MAP kinase-mediated phosphorylation of Hsp27 in actin-based motility and innate immunity.  相似文献   

18.
Cdc42 facilitates invasion but not the actin-based motility of Shigella   总被引:4,自引:0,他引:4  
The enteric pathogen Shigella utilizes host-encoded proteins to invade the gastrointestinal tract. Efficient invasion of host cells requires the stimulation of Rho-family GTPases and cytoskeletal alterations by Shigella-encoded IpaC. Following invasion and lysis of the phagosome, Shigella exploits the host's actin-based polymerization machinery to assemble an actin tail that serves as the propulsive force required for spreading within and between cells. The Shigella surface protein IcsA stimulates actin-tail formation by recruiting host-encoded N-WASP to drive Arp2/3-mediated actin assembly. N-WASP is absolutely required for Shigella motility, but not for Shigella invasion. Although Rho-family GTPases have been implicated in both the invasion and motility of Shigella, the role of Cdc42, an N-WASP activator, in this process has been controversial. In these studies, we have examined the role of Cdc42 in Shigella invasion and actin-based motility using Cdc42-deficient cells. We demonstrate that Cdc42 is required for efficient Shigella invasion but reveal a minor Cdc42-independent pathway that can permit Shigella invasion. However, the actin-based motility of Shigella, as well as vaccinia, proceeds unperturbed in the absence of Cdc42. These data further support the involvement of distinct host-encoded proteins in the steps regulating invasion and intercellular spread of Shigella.  相似文献   

19.
Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility.  相似文献   

20.
How does subcellular architecture influence the intracellular movements of large organelles and macromolecular assemblies? To investigate the effects of mechanical changes in cytoplasmic structure on intracellular motility, we have characterized the actin-based motility of the intracellular bacterial pathogen Listeria monocytogenes in normal mouse fibroblasts and in fibroblasts lacking intermediate filaments. The apparent diffusion coefficient of L. monocytogenes was two-fold greater in vimentin-null fibroblasts than in wild-type fibroblasts, indicating that intermediate filaments significantly restrict the Brownian motion of bacteria. However, the mean speed of L. monocytogenes actin-based motility was statistically identical in vimentin-null and wild-type cells. Thus, environmental drag is not rate limiting for bacterial motility. Analysis of the temporal variations in speed measurements indicated that bacteria in vimentin-null cells displayed larger fluctuations in speed than did trajectories in wild-type cells. Similarly, the presence of the vimentin meshwork influenced the turning behavior of the bacteria; in the vimentin-null cells, bacteria made sharper turns than they did in wild-type cells. Taken together, these results suggest that a network of intermediate filaments constrains bacterial movement and operates over distances of several microns to reduce fluctuations in motile behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号