首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a therapeutic agent in thrombosis the fibrinolytic enzymes are of interest and the search for a new enzyme continues. A strong fibrin-specific fibrinolytic enzyme was purified from the cell-free spent broth of thermophilic Streptomyces megasporus strain SD5. The crude enzyme was concentrated using ammonium sulphate, dialysis and lyophilization. Approximately 0.11 mg ml(-1) crude enzyme with a specific activity of 4.2 U microg(-1) was obtained. Post-electrophoretic reactivity revealed a monomeric form of the enzyme with a molecular weight of 35 kDa. The optimum pH and temperature for production of the enzyme were 8 and 55 degrees C, respectively. The enzyme was resistant to a broad range of pH ranging from 6 to 9 and temperature ranging from 37 to 60 degrees C. The enzyme was a chymotrypsin-like serine peptidase and the activity of the enzyme was N-terminal-dependent. The in vitro clot lysis by the enzyme at 37 degrees C was encouraging.  相似文献   

2.
R Mineyama  K Saito 《Microbios》1991,67(274):37-52
Dipeptidyl peptidase IV (DAP IV) was purified from Streptococcus salivarius HHT by anion-exchange chromatography, gel filtration and affinity chromatography after lysis of cell walls with N-acetylmuramidase. DAP IV was purified 114-fold with a yield of 16.6% from total activity of the crude extract. The purified enzyme was shown to be homogeneous by disc gel electrophoresis. The molecular weight of the enzyme was estimated to be about 109,000 by gel filtration and 47,000 by sodium dodecylsulphate SDS-polyacrylamide gel electrophoresis, suggesting that the native enzyme is a dimeric form. The optimum pH for the reaction was 8.7 in Gly-NaOH buffer, and the isoelectric point of the enzyme was pH 4.2. The enzyme hydrolysed specifically N-terminal X-Pro from X-Pro-p-nitroanilides. The enzyme activity was hardly affected by various cations, sulphydryl-blocking reagents and metal chelators. The enzyme activity was markedly inhibited by 1 mM diisopropylfluoride, and the desialysed enzyme was attacked by proteinases.  相似文献   

3.
根霉12#发酵产生纤溶酶的酶学性质   总被引:5,自引:0,他引:5  
溶栓疗法是血栓性疾病安全有效的治疗手段,开发新型纤溶酶具有实际应用意义.分离自南方小酒药的根霉12豆粕和麸皮为原料可产生纤溶酶.已采用盐析,疏水层析、离子交换层析和凝胶层析方法对纤溶酶分离提纯.提纯的纤溶酶比活力2143u/mg(尿激酶单位),有直接溶解血栓和激活纤溶酶原的双重溶栓作用,降解纤维蛋白α、β和γ肽链速度快;最适作用温度45℃,适宜作用pH范围6.8~8.8;等电聚焦方法测定该酶等电点8.5±0.1;只分解生色底物N-Succinvl-Ala-Ala-Pro-Phe-pNA,其米氏常数Km为O.23mmol/L,酶转换数Kcat为16.36 s-1;Molish实验和甲苯胺蓝实验均证明该酶为糖蛋白,地衣酚-硫酸法测得该酶含糖量4.70%;EDTA、PMSF、PCMB对该纤溶酶有抑制作用,说明活性中心含有巯基、金属和丝氨酸;N端12个氨基酸序列为NH2-Ser-Val-Ser-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-Gly,与其它生物来源的纤溶酶相比较没有同源性.根霉12#产生的纤溶酶为新型纤溶酶,有希望开发成溶栓药物.  相似文献   

4.
Lecithin-cholesterol acyltransferase was purified from rat plasma and the properties of this enzyme during the purification procedures and those of the purified enzyme were investigated in comparison with the human enzyme. The rat enzyme was not adsorbed on hydroxyapatite, which was employed for the purification of the human enzyme. When purified human enzyme was incubated at 37 degrees C in 0.1 mM phosphate buffer (pH 7.4; ionic strength, 0.00025), no alteration of enzyme activity was observed for up to 6 h. In the case of the rat enzyme, however, approximately 40% of the enzyme activity was lost under the same conditions. The human enzyme and rat enzyme were both retained on a Sepharose 4B column to which HDL3 was covalently linked, in 39 mM phosphate buffer, pH 7.4. Although the human enzyme was eluted from the column in 1 mM phosphate buffer, the rat enzyme was dissociated from the column at a lower buffer concentration (0.1 mM phosphate buffer). These findings indicate that the rat enzyme effectively associated with HDL3 in 39 mM phosphate buffer, pH 7.4, but the association was more sensitive to increase of ionic strength compared with that of the human enzyme.  相似文献   

5.
Membrane-bound L-lactate dehydrogenase was freed from the detergent used during purification. The detergent-free enzyme had about one-half the specific activity of the enzyme in 1.0% Tween 80, and was only partially sensitive to the specific antibody. This enzyme was activated about 3-fold with phosphatidylglycerol, cardiolipin, or a mixture of phospholipids. The phospholipid-activated enzyme had a similar Km value for L-lactate to that of the membrane enzyme and was completely inhibited by the specific antibody. On heat treatment, the phospholipid-activated enzyme was more stable than detergent-free enzyme and was as stable as membrane-bound enzyme. The alpha helical content of the enzyme increased 1.7-fold during preincubation with these lipids and the alpha helix became more stable during heat treatment than that of the detergent-free enzyme. These results suggest that the enzyme showed monomolecular dispersion in the lipid bilayer and that its conformation, including its active site and secondary structure, was different from that of the detergent-free enzyme. Phosphatidylethanolamine, dilauroyl lecithin and lecithin from egg yolk had none of the above effects on the activity or the secondary structure of the enzyme. On the other hand, mixtures of each of these lipids and cholate had essentially similar effects to phosphatidylglycerol.  相似文献   

6.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   

7.
A strain of Erwinia aroideae produces a remarkable amount of pectolytic enzyme when the organism was induced by nalidixic acid for the bacteriocin production. This pectolytic enzyme was purified approximately 60-fold from the induced medium by carboxymethyl-cellulose and Sephadex G–75 gel column chromatographies after batchwise treatment with carboxymethyl- and diethylaminoethyl-celluloses. The purified enzyme was almost homogeneous on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, a molecular weight of about 28,000 to 32,000 was determined for this enzyme. The optimum pH of the enzyme activity was about 8.0 to 8.2. The purified enzyme produced reaction products from pectin and methoxylated pectic acid which had a strong absorption at 235 nm indicating a trans-eliminase reaction. Pectin or pectic acid with higher methoxyl content was a good substrate for this enzyme, while no significant activity was observed when pectic acid was a substrate. The limit of degradation of pectin and pectic acid with higher methoxyl content (90% esterified) by the enzyme were 6.5% and 43%, respectively. It was concluded that the enzyme is a new endo-pectin trans-eliminase from bacterial origin.  相似文献   

8.
An enzyme which released invertase from cell ghosts of Candida utilis was isolated in an electrophoretically pure state from “Zymolyase.” The molecular weight of the purified enzyme was estimated to be 5.8 × 104, and its isoelectric point was pH 6.9. The enzyme was stable in a pH range from 6.0 to 9.0, and the optimal pH for liberation of invertase from cell ghosts was around 6.0. The activity of the enzyme was competitively inhibited by glucose, mannose, and sucrose. Unlike the starting enzyme preparation, “Zymolyase,” the purified enzyme released invertase without making holes on the surface of the cell ghosts. Various tests were applied, but the specificity of the enzyme was not defined.  相似文献   

9.
An enzyme producing isoprimeverose from xyloglucan fragment oligosaccharides has been purified to the electrophoretically pure state from a commercial enzyme preparation of Aspergillus oryzae (Sanzyme 1000). The purified enzyme showed approximately 1,280-fold increase of the specific activity over the original preparation. The purified enzyme was shown to be an oligomeric protein consisting of two subunits, each of which had a molecular weight of 115,000. The enzyme showed the highest activity at pH 5.0 and 60 degrees C, and was stable in the pH range from 5 to 7 and at up to 50 degrees C. The isoelectric point of this enzyme was pH 3.9. The purified enzyme was highly specific for xyloglucan fragment oligosaccharides and split off isoprimeverose units from the non-reducing end of the backbone of the substrate.  相似文献   

10.
1. Hexosaminidase A of human serum was resolved into two components, a minor form with properties identical with those of the single hexosaminidase A component of human liver, and a major form with significantly different properties. 2. The major serum hexosaminidase A form was eluted from a DEAE-cellulose column at a lower salt concentration than that required to elute the liver form. 3. A multiple-pass technique was used to elute the major serum enzyme A from a Sephadex G-150 column before that of liver enzyme A. 4. Clostridium perfringens neuraminidase converted the major component of serum hexosaminidase A into a form that was held less tightly by DEAE-cellulose, but the minor component of the A enzyme of serum, and the A enzyme of liver were not affected. 5. The hexosaminidase A from tears was similar to the A enzyme from serum, whereas those from several human tissues and from urine and lymph were similar to the liver form. 6. The A enzyme from serum may be derived from the A enzyme from liver by glycosylation before secretion.  相似文献   

11.
The structural gene (leudh) coding for leucine dehydrogenase from Bacillus sphaericus IFO 3525 was cloned into Escherichia coli cells and sequenced. The open reading frame coded for a protein of 39.8 kDa. The deduced amino acid sequence of the leucine dehydrogenase from B. sphaericus showed 76–79% identity with those of leucine dehydrogenases from other sources. About 16% of the amino acid residues of the deduced amino acid sequence were different from the sequence obtained by X-ray analysis of the B. sphaericus enzyme. The recombinant enzyme was purified to homogeneity with a 79% yield. The enzyme was a homooctamer (340 kDa) and showed the activity of 71.7 μmol·min−1·mg−1) of protein. The mutant enzymes, in which more than six amino acid residues were deleted from the C-terminal of the enzyme, showed no activity. The mutant enzyme with deletion of four amino acid residues from the C-terminal of the enzyme was a dimer and showed 4.5% of the activity of the native enzyme. The dimeric enzyme was more unstable than the native enzyme, and the Km values for -leucine and NAD+ increased. These results suggest that the Asn-Ile-Leu-Asn residues of the C-terminal region of the enzyme play an important role in the subunit interaction of the enzyme.  相似文献   

12.
A full-length cDNA of rice lipoxygenase L-2 was cloned from 3-day-old seedlings. The identity of the clone was determined by amino acid sequencing of selected peptides of the purified enzyme and immunological characterization of an active enzyme that was produced from the cDNA in Escherichia coli by cultivation at 15 degrees C. The nucleotide sequence showed a strong bias toward G and C in the selection of nucleotides, especially at the third position of the codons (93% G/C). The complete amino acid sequence of the enzyme was deduced from the nucleotide sequence. The molecular mass of the enzyme was calculated to be 96,657 Da based on 865 amino acids. The amino acid sequence shares similarity with those of dicot lipoxygenases throughout the enzyme at a level of 50%. A hydropathy profile calculated from the amino acid sequence resembled those of dicot lipoxygenases, suggesting conservation of the secondary structure of these enzymes. The active enzyme, expressed in Escherichia coli, was characterized for pH dependence of the enzyme activity, intramolecular specificity, heat stability and Km. The enzyme had the same properties as the L-2 enzyme that was isolated from seedlings, but differed from the lipoxygenase L-3 isolated from mature plants.  相似文献   

13.
Glyceraldehyde-3-phosphate dehydrogenase [ED 1.2.1.12] was purified from the horseshoe crab, a living fossil, and its properties were examined. 1 The purified enzyme was homogeneous as judged by various tests. The enzyme, like enzymes from other sources, was a tetramer with a subunit molecular weight of 36,000. The kinetic parameters and pH optimum were also similar to those of other enzymes, though the enzyme was more stable against heat and pH denaturations. 2 Analysis of SH groups showed that there were 4 SH groups per subunit, one of which was essential for the enzyme activity and was highly reactive. 3. CD spectra of the enzyme suggested that the enzyme had a very high content of beta-structure (ca. 45 per cent). 4. The horseshoe crab enzyme could form a hybrid in vitro with the rabbit muscle enzymes in concentrated salt solution at acidic pH. 5. There results indicate that the enzyme has overall structural similarity to other enzymes and that the enzyme is highly conserved during a long period of evolution. Some discussions on the structure and activity of the horseshoe crab enzyme are made in comparison with the enzymes from other sources.  相似文献   

14.
Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a beta-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60 degrees C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50 degrees C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only beta-2,6-linkage of levan, but also beta-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-beta-D-fructan 6-levanbiohydrolase (EC 3.2.1.64).  相似文献   

15.
A pyridoxal dehydrogenase was purified to homogeneity from Aureobacterium luteolum, which can use pyridoxine as a carbon and nitrogen source, and characterized. The enzyme was a dimeric protein with a subunit molecular weight of 38,000. It had several properties distinct from those of the partially purified enzyme from Pseudomonas MA-1. The optimum pH (8.0-8.5) was 0.8-1.3 lower than that of the Pseudomonas enzyme. The Aureobacterium enzyme showed much higher and lower affinities for NAD+ (Km, 0.140 +/- 0.008 mM) and pyridoxal (0.473 +/- 0.109 mM), respectively, than those of the Pseudomonas enzyme. The Aureobacterium enzyme could use NADP+ as a substrate: the reactivity was 6.5% of NAD+. The enzyme was much more tolerant to metal-chelating agents. Irreversibility of the enzymatic reaction was shared by the two enzymes. No aldehyde dehydrogenase showed similarity to the amino-terminal amino acid sequence of the enzyme.  相似文献   

16.
Pyruvate:NADP+ oxidoreductase was homogeneously purified from crude extract of Euglena gracilis. The Mr of the enzyme was estimated to be 309,000 by gel filtration. The enzyme migrated as a single protein band with Mr of 166,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the enzyme consists of two identical polypeptides. The absorption spectrum of the native enzyme exhibited maxima at 278, 380, and 430 nm, and a broad shoulder was observed around 480 nm; the maximum at 430 nm was eliminated by reduction of the enzyme with dithionite. Reduction of the enzyme with pyruvate and CoA and reoxidation with NADP+ were proved from changes of absorption spectra. The enzyme contained 2 molecules of FAD and 8 molecules of iron. It was also indicated that the enzyme was thiamine pyrophosphate-dependent. The enzyme was oxygen-sensitive, and the reaction was affected by the presence of oxygen. Pyruvate was the most active substrate, but the enzyme was slightly active for 2-oxobutyrate, 3-hydroxypyruvate, and oxalacetate, but not for glyoxylate and 2-oxoglutarate. The native electron acceptor was NADP+, whereas NAD+ was completely inactive. Methyl viologen, benzyl viologen, FAD, and FMN were utilized as artificial electron acceptors, whereas spinach and Clostridium ferredoxins were inactive. Pyruvate synthesis by reductive carboxylation of acetyl-CoA with NADPH as the electron donor occurred by the reverse reaction of the enzyme. The enzyme also catalyzed a pyruvate-CO2 exchange reaction and electron-transfer reaction from NADPH to other electron acceptors like methyl viologen. These results indicate that pyruvate:NADP+ oxidoreductase in E. gracilis is clearly distinct from either the pyruvate dehydrogenase multienzyme complex or pyruvate:ferredoxin oxidoreductase.  相似文献   

17.
The coenzyme A (CoA)-linked butyraldehyde dehydrogenase (BAD) from Clostridium acetobutylicum was characterized and purified to homogeneity. The enzyme was induced over 200-fold, coincident with a shift from an acidogenic to a solventogenic fermentation, during batch culture growth. The increase in enzyme activity was found to require new protein synthesis since induction was blocked by the addition of rifampin and antibody against the purified enzyme showed the appearance of enzyme antigen beginning at the shift of the fermentation and increasing coordinately with the increase in enzyme specific activity. The CoA-linked acetaldehyde dehydrogenase was copurified with BAD during an 89-fold purification, indicating that one enzyme accounts for the synthesis of the two aldehyde intermediates for both butanol and ethanol production. Butanol dehydrogenase activity was clearly separate from the BAD enzyme activity on TEAE cellulose. A molecular weight of 115,000 was determined for the native enzyme, and the enzyme subunit had a molecular weight of 56,000 indicating that the active form is a homodimer. Kinetic constants were determined in both the forward and reverse directions. In the reverse direction both the Vmax and the apparent affinity for butyraldehyde and caproaldehyde were significantly greater than they were for acetaldehyde, while in the forward direction, the Vmax for butyryl-CoA was fivefold that for acetyl-CoA. These and other properties of BAD indicate that this enzyme is distinctly different from other reported CoA-dependent aldehyde dehydrogenases.  相似文献   

18.
l-Gulonolactone oxidase was purified from chicken kidney microsomes in order to test whether this enzyme had potential advantages in our enzyme therapy studies. Chicken was selected because it has an enzyme that is structurally distinct from the enzyme in mammals and has high enzyme activity. An essentially homogeneous preparation of chicken l-gulonolactone oxidase is obtained by a seven-step procedure. Certain characteristics of this enzyme are presented. The enzyme was found to be quite unstable. However, immunoprecipitates of the enzyme are greatly stabilized. Therefore, this form was administered to young ascorbic acid-deficient guinea pigs that had been supplemented with l-gulonolactone. These animals showed a marked increase in plasma ascorbic acid concentrations.  相似文献   

19.
A fibrinolytic enzyme from Bacillus subtilis strain Al was purified by chromatographic methods, including DEAE Sephadex A-50 column chromatography and Sephadex G-50 column gel filtration. The purified enzyme consisted of a monomeric subunit and was estimated to be approximately 28 kDa in size by SDS-PAGE. The specific activity of the fibrinolytic enzyme was 1632-fold higher than that of the crude enzyme extract. The fibrinolytic activity of the purified enzyme was approximately 0.62 and 1.33 U/ml in plasminogen-free and plasminogen-rich fibrin plates, respectively. Protease inhibitors PMSF, DIFP, chymostatin, and TPCK reduced the fibrinolytic activity of the enzyme to 13.7, 35.7, 15.7, and 23.3%, respectively. This result suggests that the enzyme purified from B. subtilis strain Al was a chymotrypsin-like serine protease. In addition, the optimum temperature and pH range of the fibrinolytic enzyme were 50°C and 6.0–10.0, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as Q-T-G-G-S-I-I-D-P-I-N-G-Y-N, which was highly distinguished from other known fibrinolytic enzymes. Thus, these results suggest a fibrinolytic enzyme as a novel thrombolytic agent from B. subtilis strain Al.  相似文献   

20.
An intracellular alpha-L-arabinofuranosidase from Pichia capsulata X91 was purified and characterized. The enzyme was purified to homogeneity from a cell-free extract by ammonium sulfate treatment, Concanavalin A-Sepharose, ion-exchange chromatography with DEAE Bio-Gel A agarose, arabinose-Sepharose 6B affinity chromatography, and hydroxyapatite column chromatography. The apparent molecular mass of the enzyme was estimated to be 250 kDa by native-PAGE. The enzyme molecule was suggested to be a tetramer with a subunit molecular mass of 72 kDa by SDS-PAGE. The enzyme had an isoelectric point at 5.1, and was most active at pH 6.0 and at around 50 degrees C. The alpha-L-arabinofuranosidase was active at ethanol concentrations of wine. The enzyme was inhibited by Cu2+, Hg2+, and p-chloromercuribenzoate. The enzyme hydrolyzed beet arabinan and arabinogalactan, and efficiently released monoterpenols from an aroma precursor extracted from Muscat grape juice. A considerable amount of monoterpenols was produced in the Muscat wine coupled with the enzyme addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号