首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linolenic acid (C18:3) is the main endogenous unsaturated fatty acid of thylakoid membrane lipids, and seems in its free form to exert significant effects on the structure and function of photosynthetic membranes. In this investigation the effect of linolenic acid was studied at various pH values on the electron flow rate in isolated spinach chloroplasts and related to deltapH, the proton pump and the pH of the inner thylakoid space (pHi). The deltapH and pHi were estimated from the extent of the fluorescence quenching of 9-aminoacridine. Linolenic acid caused a shift (approximately one unit) of the pH optimum for electron flow toward acidity in the following systems: (a) photosystems II + I (from H2O to NADP+ or to 2,6-dichlorophenolindophenol) coupled or non-coupled; (b) photosystem II (from H2O to 2,6-dichlorophenolindophenol in the presence of dibromothymoquinone). In photosystem I conditions (phenazine methosulphate), the deltapH of the control increased as a function of external pHo with a maximum around pH 8.8. When linolenic acid was added, the deltapH dropped, but its optimum was shifted toward more acidic pHo. The same phenomena were also observed in photosytems II + I (from H2O to ferricyanide) and in photosystem II conditions (from H2O to ferricyanide in the presence of dibromothymoquinone). However, the deltapH was smaller and the sensitivity of the proton gradient toward linolenic acid was eventually higher than for photosystem I electron flow activity. The proton pump which might be considered as a measure of the internal buffering capacity of thylakoids was optimum at pHo, 6.7 in the controls. An addition of linolenic acid diminished the proton pump and shifted its optimum toward higher pHo. As a consequence, pHi increased when pHo was raised. At the optimal pHo 8.6 to 9, pHi were 5 to 5.5. Additions of increasing concentrations of linolenic acid displaced the curves toward higher pHi. A decrease of pHo was therefore required to maintain the pHi in the range of 5-5.5 for maximum electron flow. In conclusion, the electron flow activity seems to be delicately controlled by the proton pump (buffer capacity), deltapH, pHi and pHo. Fatty acids damage the membrane integrity in such a way that the subtile equilibrium between the factors is disturbed.  相似文献   

2.
Buckhout TJ 《Plant physiology》1994,106(3):991-998
The kinetics behavior of the H+-sucrose (Suc) symporter was investigated in plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves by analyzing the effect of external and internal pH (pHo and pHi, respectively) on Suc uptake. The apparent Km for Suc uptake increased 18-fold as the pHo increased from 5.5 to 7.5. Over this same pHo range, the apparent Vmax for Suc uptake remained constant. The effects of pHi in the presence or absence of internal Suc were exclusively restricted to changes in Vmax. Thus, proton concentration on the inside of the membrane vesicles ([H+]i) behaved as a noncompetitive inhibitor of Suc uptake. The Km for the proton concentration on the outside of the membrane vesicles was estimated to be pH 6.3, which would indicate that at physiological apoplastic pH Suc transport might be sensitive to changes in pHo. On the other hand, the [H+]i for half-maximal inhibition of Suc uptake was approximately pH 5.4, making regulation of Suc transport through changes in [H+]i unlikely. These results were interpreted in the framework of the kinetics models for co-transport systems developed by D. Sanders, U.-P. Hansen, D. Gradmann, and C. L. Slayman (J Membr Biol [1984] 77: 123-152). Based on their analysis, the behavior of the Suc symporter with respect to the [H+]i is interpreted as an ordered binding mechanism by which the binding of Suc on the apoplastic side of the membrane and its release on the symplastic side precedes that of H+ (i.e. a first-on, first-off model).  相似文献   

3.
Interactions between intracellular pH (pHi) and H+-coupled transmembrane transport of glycine have been studied by means of 31P-NMR, using both aerobic and 'energy starved' cells of the yeast Saccharomyces cerevisiae. The general features of glycine transport in the yeast strain used (NCYC 239) are similar to those already reported for Saccharomyces carlsbergensis and S. cerevisiae, there being two kinetically distinct glycine uptake systems, with pH-independent K1/2 values near 14 and 0.4mM, respectively, but pH-dependent maximal velocities. Glycine transport itself has no measurable effect on pHi in aerobic cells, and only a marginal effect in energy-starved cells, but changes of pHi, imposed by extracellular addition of butyric acid, strongly influence glycine transport. Indeed, the dependence of glycine influx (in energy-starved cells) upon cytoplasmic H+ concentration appears to be third order, showing Hill slopes of 2.7-3.0. A crucial kinetic role for cytoplasmic pH in glycine transport is further indicated by a proportionality between the decline of flux and the decline of pHi produced by various metabolic inhibitors and uncouplers. Extracellular pH (pHo), by contrast, has only a weak effect on glycine influx, showing a Hill slope of 0.5. The major observations can be accommodated by a simple cyclic carrier scheme, in which 2 or more protons are transported along with glycine, but only one extracellular proton binding site dissociates in the testing range, with a pK near 5.5. The model requires a finite membrane potential, which must be somewhat sensitive to both pHi and pHo, and accommodates the discrepancy between measured net proton flux (one per glycine) and the kinetically required proton flux (two or more per glycine) by shunting through other proton-conducting pathways in the yeast membrane.  相似文献   

4.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

5.
A Dascalu  Z Nevo  R Korenstein 《FEBS letters》1991,282(2):305-309
Activation of the Na+/H+ exchanger following isosmotic and hyperosmotic stimuli was investigated in an osteoblast cell line (RCJ 1.20). The pH dependence of the transporter activity was studied under conditions of abolished proton gradient (pHi = pHo) across the membrane. The isotonic response is Na+o dependent, increases towards higher pH-values, displaying a sigmoidal dependence on pHi = o (Hill coefficient approximately 1.8) and is controlled by pHo. The greater than first order dependence on pH suggests that H+o inhibits the exchange beyond the rate expected from competition with the Na+o alone. This may be due to the existence of an external H+ regulatory site with a negative cooperative effect on the intra- or extracellular transport site. The hyperosmotic activation is Na+o independent, parallels the sigmoidal pH dependence of the isosmotic stimulus (Hill coefficient approximately 2.0) and is mediated through an increase of the Vmax without a change in the intracellular proton sensitivity.  相似文献   

6.
We have employed two independent techniques to measure the intracellular pH (pHi) in giant glial cells of the leech Hirudo medicinalis, using the fluorescent dye 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF) and double-barreled neutral-carrier, pH-sensitive microelectrodes, which also record the membrane potential. We have compared two procedures for calibrating the ratio of the BCECF signal, excited at 440 nm and 495 nm: 1) the cell membrane was H(+)-permeabilized with nigericin in high-K+ saline at different external pH (pHo) values, and 2) the pHi of intact cells was perturbed in CO2/HCO3(-) -buffered saline of different pH, and the BCECF ratio was calibrated according to a simultaneous microelectrode pH reading. As indicated by the microelectrode measurements, the pHi did not fully equilibrate to the pHo values in nigericin-containing, high-K+ saline, but deviated by -0.12 +/- 0.02 (mean +/- SEM, n = 37) pH units. In intact cells, the microelectrode readings yielded up to 0.15 pH unit lower values than the calibrated BCECF signal. In addition, larger dye injections into the cells (> 100 microM) caused an irreversible membrane potential loss indicative of some damage to the cells. The amplitude and kinetics of slow pHi changes were equally followed by both sensors, and the dye ratio recorded slightly higher amplitudes during faster pHi shifts as induced by the addition and removal of NH4+.  相似文献   

7.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

8.
Protons as substitutes for sodium and potassium in the sodium pump reaction   总被引:6,自引:0,他引:6  
The role of protons as substitutes for Na+ and/or K+ in the sodium pump reaction was examined using inside-out membrane vesicles derived from human red cells. Na+-like effects of protons suggested previously (Blostein, R. (1985) J. Biol. Chem. 260, 829-833) were substantiated by the following observations: (i) in the absence of extravesicular (cytoplasmic) Na+, an increase in cytoplasmic [H+] increased both strophanthidin-sensitive ATP hydrolysis (nu) and the steady-state level of phosphoenzyme, EP, and (ii) as [H+] is increased, the Na+/ATP coupling ratio is decreased. K+-like effects of protons were evidenced in the following results: (i) an increase in nu, decrease in EP, and hence increase in EP turnover (nu/EP) occur when intravesicular (extracellular) [H+] is increased; (ii) an increase in the rate of Na+ influx into K+(Rb+)-free inside-out vesicles and (iii) a decrease in Rb+/ATP coupling occur when [H+] is increased. Direct evidence for H+ being translocated in place of cytoplasmic Na+ and extracellular K+ was obtained by monitoring pH changes using fluorescein isothiocyanate-dextran-filled vesicles derived from 4',4-diisothiocyano-2',2-stilbene disulfonate-treated cells. With the initial pHi = pHo = pH 6.2, a strophanthidin-sensitive decrease in pHi was observed following addition of ATP provided the vesicles contained K+. This pH gradient was abolished following addition of Na+. With alkali cation-free inside-out vesicles, a strophanthidin-sensitive increase in pH was observed upon addition of both ATP and Na+. The foregoing changes in pHi were not affected by the addition of tetrabutylammonium to dissipate any membrane potential and were not observed at pH 6.8. These ATP-dependent cardiac glycoside-sensitive proton movements indicate Na,K-ATPase mediated Na+/H+ exchange in the absence of extracellular K+ as well as H+/K+ exchange in the absence of cytoplasmic Na+.  相似文献   

9.
The acid tolerance response (ATR) of chemostat cultures of Lactococcus lactis subsp. cremoris NCDO 712 was dependent on the dilution rate and on the extracellular pH (pHo). A decrease in either the dilution rate or the pHo led to a decrease in the cytoplasmic pH (pHi) of the cells, and similar levels of acid tolerance were observed at any specific pHi irrespective of whether the pHi resulted from manipulation of the growth rate, manipulation of the pHo, or both. Acid tolerance was also induced by sudden additions of acid to chemostat cultures growing at a pHo of 7.0, and this induction was completely inhibited by chloramphenicol. The end products of glucose fermentation depended on the growth rate and the environmental pHo of the cultures, but neither the spectrum of end products nor the total rate of acid production correlated with a specific pHi. The rate of ATP formation was not correlated with pHi, but a good correlation between the cellular level of H+-ATPase and pHi was observed. Moreover, an inverse correlation between the cytoplasmic levels of ATP and pHi was established. Each pHi below 6. 6 was characterized by unique levels of ATR, H+-ATPase, and ATP. High levels of H+-ATPase also coincided with high levels of acid tolerance of cells in batch cultures induced with sublethal levels of acid. We concluded that H+-ATPase is one of the ATR proteins induced by acid pHi through growth at an acid pHo or a slow growth rate.  相似文献   

10.
Bicarbonate is important for pHi control in cardiac cells. It is a major part of the intracellular buffer apparatus, it is a substrate for sarcolemmal acid-equivalent transporters that regulate intracellular pH, and it contributes to the pHo sensitivity of steady-state pHi, a phenomenon that may form part of a whole-body response to acid/base disturbances. Both bicarbonate and H+/OH- transporters participate in the sarcolemmal regulation of pHi, namely Na(+)-HCO3-cotransport (NBC), Cl(-)-HCO3- exchange (i.e., anion exchange, AE), Na(+)-H+ exchange (NHE), and Cl(-)-OH- exchange (CHE). These transporters are coupled functionally through changes of pHi, while pHi is linked to [Ca2+]i through secondary changes in [Na+] mediated by NBC and NHE. Via such coupling, decreases of pHo and pHi can ultimately lead to an elevation of [Ca2+]i, thereby influencing cardiac contractility and electrical rhythm. Bicarbonate is also an essential component of an intracellular carbonic buffer shuttle that diffusively couples cytoplasmic pH to the sarcolemma and minimises the formation of intracellular pH microdomains. The importance of bicarbonate is closely linked to the activity of the enzyme carbonic anhydrase (CA). Without CA activity, intracellular bicarbonate-dependent buffering, membrane bicarbonate transport, and the carbonic shuttle are severely compromised. There is a functional partnership between CA and HCO3- transport. Based on our observations on intracellular acid mobility, we propose that one physiological role for CA is to act as a pH-coupling protein, linking bulk pH to the allosteric H+ control sites on sarcolemmal acid/base transporters.  相似文献   

11.
The internal pH value (pHi) of the long-slender bloodstream form of Trypanosoma brucei was estimated from the distribution of 14C-labeled 5,5-dimethyl-2,4-oxazolidinedione or 14C-labeled methyl amine between the intracellular space of the cells and the medium. The pHi of T. brucei remained relatively constant at 7.0-7.2 throughout an extracellular pH (pHo) range of 6.0-8.0. The maintenance of an internal pH more acidic than the environment appears to be a unique feature. Preincubation of T. brucei with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or CCCP + valinomycin had no appreciable effect on the delta pH across the T. brucei membrane when the external pH was 8.0. However, when the external pH was 6.0, CCCP abolished the observed delta pH. Nigericin significantly dissipated the delta pH across the T. brucei membrane at all pHo values. These data suggest that under physiological conditions, the maintenance of a delta pH across the bloodstream-form T. brucei membrane may be by a mechanism other than an energy-dependent gradient, whereas an energy-dependent pump may be needed for maintaining the pHi in an acidic environment. The electrical potential (delta psi) across the trypanosomal plasma membrane was also estimated using the lipophilic cation, [3H]tetraphenyl-phosphonium bromide. It appears dependent on both the external pH and the external salt conditions. Under ionic conditions similar to the host bloodstream, it ranges from -76 to -160 mV over an external pH range of 6.0 to 8.0, with an estimated value of -155.5 +/- 0.7 at the physiological pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of intracellular signals (pHi, Na+i, Ca2+i, and the electrical membrane potential), on Na+ transport mediated by the Na+/K+ pump were investigated in the isolated Rana esculenta frog skin. In particular we focussed on pHi sensitivity since protons act as an intrinsic regulator of transepithelial Na+ transport (JNa) by a simultaneous control of the apical membrane Na+ conductance (gNa) and the basolateral membrane K+ conductance (gK). pHi changes which modify JNa, gNa and gK, do not affect the Na+ transport mediated by the pump as shown by kinetic and electrophysiological studies. In addition, no changes were observed in the number of 3H-ouabain binding sites in acid-loaded epithelia. Our attempts to modify cellular Ca2+ (by using Ca(2+)-free/EGTA Ringer solution or A23187 addition) also failed to produce any significant effects in the Na+ pump turnover rate or the number of 3H-ouabain binding sites. The Na+ pump current was found to be sensitive to the basolateral membrane potential, saturating for very positive (cell) potentials and a reversal potential of -160 mV was calculated from I-V relationships of the pump. Changes in Na+i considerably affected the Na+ pump rate. A saturating relationship was found between pump rate and Nai+ with maximal activation at Nai+ greater than 40 mmol/l; a high dependence of the pump rate and of the number of 3H-ouabain binding sites was observed in the physiological range of Nai+. We conclude that protons (in the physiological pH range) which act directly and simultaneously on the passive transport pathways (gNa and gK), have no direct effect on the Na+/K+ pump rate. After an acid load, the inhibition of JNa is primarily due to the reduction of gNa. This results in a reduction of Nai and the pump turnover rate then becomes dependent on other pathways of Na+ entry such as the basolateral membrane Na+/H+ exchanger.  相似文献   

13.
The net synthesis of ATP in dark anaerobic cells of Anacystis nidulans subjected to acid jumps and/or valinomycin pulses was characterized thermodynamically and kinetically. Maximum initial rates of 75 nmol ATP/min per mg dry weight at an applied proton motive force of -350 mV were obtained, the flow-force relationship (rate of ATP synthesis vs applied proton motive force) being linear between -240 and -320 mV irrespective of the source of the proton motive force. The pulse-induced ATP synthesis was inhibited by uncouplers (H+ ionophores) and F0F1-ATPase inhibitors but not by KCN or CO. In order to obtain maximum rates of pulse-induced ATP synthesis both a favorable stationary delta psi (-100 mV at pHo 9, preceding the acid jumps) and a favorable stationary delta pH (+2 units at pHo 4.1, preceding the valinomycin pulse) of the plasma membrane were obligatory, the effects of delta psi and delta pH being strictly additive. Moreover, the pulse-induced ATP synthesis required a minimum total proton motive force of -200 to -250 mV across the plasma membrane; it also required low preexisting phosphorylation potentials corresponding to -400 mV in dark anaerobic, i.e., energy-depleted, cells. The results are discussed in terms of both a reversible H+-ATPase and a respiratory electron transport system occurring in the plasma membrane of intact Anacystis nidulans.  相似文献   

14.
We used microelectrodes to monitor the recovery (i.e., decrease) of intracellular pH (pHi) after using internal dialysis to load squid giant axons with alkali to pHi values of 7.7, 8.0, or 8.3. The dialysis fluid (DF) contained 400 mM K+ but was free of Na+ and Cl-. The artificial seawater (ASW) lacked Na+, K+, and Cl-, thereby eliminating effects of known acid-base transporters on pHi. Under these conditions, halting dialysis unmasked a slow pHi decrease caused at least in part by acid-base transport we refer to as "base efflux." Replacing K+ in the DF with either NMDG+ or TEA+ significantly reduced base efflux and made membrane voltage (Vm) more positive. Base efflux in K(+)-dialyzed axons was stimulated by decreasing the pH of the ASW (pHo) from 8 to 7, implicating transport of acid or base. Although postdialysis acidifications also occurred in axons in which we replaced the K+ in the DF with Li+, Na+, Rb+, or Cs+, only with Rb+ was base efflux stimulated by low pHo. Thus, the base effluxes supported by K+ and Rb+ appear to be unrelated mechanistically to those observed with Li+, Na+, or Cs+. The combination of 437 mM K+ and 12 mM HCO3- in the ASW, which eliminates the gradient favoring a hypothetical K+/HCO3- efflux, blocked pHi recovery in K(+)-dialyzed axons. However, the pHi recovery was not blocked by the combination of 437 mM Na+, veratridine, and CO2/HCO3- in the ASW, a treatment that inverts electrochemical gradients for H+ and HCO3- and would favor passive H+ and HCO3- fluxes that would have alkalinized the axon. Similarly, the recovery was not blocked by K+ alone or HCO3- alone in the ASW, nor was it inhibited by the K-H pump blocker Sch28080 nor by the Na-H exchange inhibitors amiloride and hexamethyleneamiloride. Our data suggest that a major component of base efflux in alkali-loaded axons cannot be explained by metabolism, a H+ or HCO3- conductance, or by a K-H exchanger. However, this component could be mediated by a novel K/HCO3- cotransporter.  相似文献   

15.
The intracellular pH (pHi) changes resulting from chemotactic factor-induced activation of Na+/H+ exchange in isolated human neutrophils were characterized. Intracellular pH was measured from the equilibrium distribution of [14C]-5,5-dimethyloxazolidine-2,4-dione and from the fluorescence of 6-carboxyfluorescein. Exposure of cells to 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) in 140 mM Na+ medium at extracellular pH (pHo) 7.40 led to a rise in pHi along an exponential time course (rate coefficient approximately 0.55 min-1). By 10 min, a new steady-state pHi was reached (7.75-7.80) that was 0.55-0.60 units higher than the resting pHi of control cells (7.20-7.25). The initial rate of H+ efflux from the cells (approximately 15 meq/liter X min), calculated from the intrinsic intracellular buffering power of approximately 50 mM/pH, was comparable to the rate of net Na+ influx (approximately 17 meq/liter X min), an observation consistent with a 1:1 stoichiometry for Na+/H+ exchange. This counter-transport could be inhibited by amiloride (apparent Ki approximately 75 microM). When either the external ([Na+]o) or internal Na ([Na+]i) concentrations, pHo, or pHi were varied independently, the new steady-state [Na+]i and pHi values in FMLP-stimulated cells were those corresponding to a chemical equilibrium distribution of Na+ and H+ across the cell membrane. By analogy to other activated cells, these results indicate that an alkalinization of pHi in human neutrophils is mediated by a chemotactic factor-induced exchange of internal H+ for external Na+.  相似文献   

16.
Properties of the Na+/H+ exchange system in synaptosomes have been studied primarily by using acridine orange fluorescence to follow H+ efflux. Results obtained from 22Na+ uptake experiments and [3H]ethylpropylamiloride binding experiments are also presented for comparison. The basal properties of the Na+/H+ antiport in synaptosomes are similar to those found in other systems; (i) the stoichiometry of Na+/H+ exchange is 1:1; (ii) Li+ can be successfully substituted for Na+; its affinity for the exchanger (KLi+ = 3 mM) is higher than that of Na+ (KNa+ = 12 mM), but the maximal rate of H+ efflux in the presence of Li+ is about 3 times lower than the maximal rate of H+ efflux in the presence of Na+; and (iii) the Na+/H+ antiport is inhibited by amiloride derivatives with the rank order:ethylisopropylamiloride greater than ethylpropylamiloride greater than amiloride greater than benzamil. The most important finding of this paper is that the external pH dependence of the synaptosomal Na+/H+ antiport is controlled by the value of internal pH and vice versa. For example apparent pHo values for half-maximum activation of the Na+/H+ exchanger are pHo = 7.12 when pHi = 6.4 and pHo = 7.95 when pHi = 7.3. Therefore, a 0.9 pH unit increase in internal pH produces a shift of at least a 0.83 pH unit in the external pH dependence. In addition, changing pHo from 7.75 to 8.50 also shifts the half-maximum pHi value for activation of the Na+/H+ antiport from 6.67 to 7.54.  相似文献   

17.
The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5-(N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity.  相似文献   

18.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The pH difference generated across the chloroplast membraneupon illumination (pH) and the internal pH (pHi) were analyzedin aged spinach chloroplasts and in fresh chloroplasts supplementedwith linolenate. In electron-flow conditions where both photosystemsor either photosystem alone were functional, the pH droppedand their optima shifted toward more acidic external pH (pHo)with a simultaneous increase in pHi. Upon aging or additionof linolenate, a decrease of pHo was therefore required to maintainthe pHi in the range of 5–5.5 for maximum electron-flowactivity. Moreover, aging like linolenate, diminished the protonpump activity and shifted its optimum (pH 6.7 in the controls)toward higher pHo. Although pH and pHi changes were similarin all electron-flow conditions, the sensitivity of pH towardaging and linolenate was eventually higher under photosystemII than photosystem I conditions. In conclusion, the electron-flow activity seems to be delicatelycontrolled by the proton pump, pH, pHi and pHo. Unsaturatedfatty acids which are released during chloroplast aging damagethe membrane integrity in such a way that the subtle equilibriumbetween these factors is disturbed. (Received April 19, 1977; )  相似文献   

20.
Rat pancreatic acini loaded with the pH sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to characterize intracellular pH (pHi) regulatory mechanisms in these cells. The acini were attached to cover slips and continuously perfused. In 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered solutions recovery from acid load (H+ efflux) required extracellular Na+ (Na+out) and was blocked by amiloride. Likewise, H+ influx initiated by removal of Na+out was blocked by amiloride. Hence, in HEPES-buffered medium the major operative pHi regulatory mechanism is a Na+/H+ exchange. In HCO3(-)-buffered medium, amiloride only partially blocked recovery from acid load and acidification due to Na+out removal. The remaining fraction required Na+out, was inhibited by H2-4,4'-diisothiocyanostilbene-2,2'-disulfunic acid (H2DIDS) and was independent of C1-. Hence, a transporter with characteristics of a Na(+)-HCO3- cotransport exists in pancreatic acini. Measurement of pHi changes due to Na(+)-HCO3- cotransport, suggests that the transporter contributes to HCO3- efflux under physiological conditions. Changing the Cl- gradient across the plasma membrane of acini maintained in HCO3(-)-buffered solutions reveals the presence of an H2DIDS-sensitive, Na(+)-independent, Cl(-)-dependent, HCO3- transporter with characteristics of a Cl-/HCO3- exchanger. In pancreatic acini the exchanger transports HCO3- but not OH- and under physiological conditions functions to remove HCO3- from the cytosol. In summary, only the Na+/H+ exchanger is functional in HEPES-buffered medium to maintain pHi at 7.28 +/- 0.03. In the presence of 25 mM HCO3- at pHo of 7.4, all the transporters operate simultaneously to maintain a steady-state pHi of 7.13 +/- 0.04.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号