首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Vacuolar myelopathy (VM) is a frequent central nervous system complication of human immunodeficiency virus type 1 (HIV-1) infection. We report here that transgenic (Tg) mice expressing even low levels of Nef in oligodendrocytes under the regulation of the myelin basic protein (MBP) promoter (MBP/HIV(Nef)) developed VM similar to the human disease in its appearance and topography. The spinal cords of these Tg mice showed lower levels of the myelin proteins MAG and CNPase and of the 21-kDa isoform of MBP prior to the development of vacuoles. In addition, Tg oligodendrocytes in primary in vitro cultures appeared morphologically more mature but, paradoxically, exhibited a less mature phenotype based on O4, O1, CNPase, and MBP staining. In particular, mature CNPase(+) MBP(+) Tg oligodendrocytes were less numerous than non-Tg oligodendrocytes. Therefore, Nef appears to affect the proper differentiation of oligodendrocytes. These data suggest that even low levels of Nef expression in human oligodendrocytes may be responsible for the development of VM in HIV-1-infected individuals.  相似文献   

2.
Multiple sclerosis is an inflammatory disease of the CNS that involves immune reactivity against myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the outer surface of CNS myelin. The epitope MOG92-106 is a DR4-restricted Th cell epitope and a target for demyelinating autoantibodies. In this study, we show that the immune response elicited by immunization with this epitope is qualitatively different from immune responses induced by the well-defined epitopes myelin basic protein (MBP) 84-96 and proteolipid protein (PLP) 139-151. Mice with MOG92-106-, but not with MBP84-96- or PLP139-151-induced experimental autoimmune encephalomyelitis developed extensive B cell reactivity against secondary myelin Ags. These secondary Abs were directed against a set of encephalitogenic peptide Ags derived from MBP and PLP as well as a broad range of epitopes spanning the complete MBP sequence. The observed diversification of the B cell reactivity represents a simultaneous spread toward a broad range of antigenic epitopes and differs markedly from T cell epitope spreading that follows a sequential cascade. The Abs were of the isotypes IgG1 and IgG2b, indicating that endogenously recruited B cells receive help from activated T cells. In sharp contrast, B cell reactivity in MBP84-96- and PLP139-151-induced experimental autoimmune encephalomyelitis was directed against the disease-inducing Ag only. These data provide direct evidence that the nature of the endogenously acquired immune reactivity during organ-specific autoimmunity critically depends on the disease-inducing Ag. They further demonstrate that the epitope MOG92-106 has the specific capacity to induce a widespread autoimmune response.  相似文献   

3.
An increase in central nervous system (CNS) remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis (MS). RNS60 is a bioactive aqueous solution generated by subjecting normal saline to Taylor–Couette–Poiseuille flow under elevated oxygen pressure. Recently we have demonstrated that RNS60 exhibits anti-inflammatory properties. Here, we describe promyelinating property of RNS60. RNS60, but not normal saline (NS), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), stimulated the expression of myelin-specific genes and proteins (myelin basic protein, MBP; myelin oligodendrocyte glycoprotein, MOG and proteolipid protein, PLP) in primary mouse oligodendroglia and mixed glial cells. While investigating the mechanisms, we found that RNS60 treatment induced the activation of cAMP response element binding protein (CREB) in oligodendrocytes, ultimately leading to the recruitment of CREB to the promoters of myelin-specific genes. Furthermore, activation of type 1A p110β/α, but not type 1B p110γ, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated activation of CREB and upregulation of myelin genes by LY294002 (a specific inhibitor of PI-3 kinase) suggest that RNS60 upregulates the activation of CREB and the expression of myelin-specific molecules in oligodendrocytes via activation of PI3 kinase. These results highlight a novel promyelinating property of RNS60, which may be of benefit for MS and other demyelinating disorders.  相似文献   

4.
5.
Astaxanthin, a carotenoid without vitamin A activity, has shown anti-oxidant and anti-inflammatory activities; however, its molecular action and mechanism have not been elucidated. We examined in vitro and in vivo regulatory function of astaxanthin on production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Astaxanthin inhibited the expression or formation production of these proinflammatory mediators and cytokines in both lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary macrophages. Astaxanthin also suppressed the serum levels of NO, PGE2, TNF-alpha, and IL-1beta in LPS-administrated mice, and inhibited NF-kappaB activation as well as iNOS promoter activity in RAW264.7 cells stimulated with LPS. This compound directly inhibited the intracellular accumulation of reactive oxygen species in LPS-stimulated RAW264.7 cells as well as H2O2-induced NF-kappaB activation and iNOS expression. Moreover, astaxanthin blocked nuclear translocation of NF-kappaB p65 subunit and I(kappa)B(alpha) degradation, which correlated with its inhibitory effect on I(kappa)B kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-kappaB activation and as a consequent suppression of IKK activity and I(kappa)B-alpha degradation.  相似文献   

6.
7.
Holz  A  Schwab  M. E 《Brain Cell Biology》1997,26(7):467-477
The myelin-associated/oligodendrocyte basic proteins (MOBPs) are recently discovered constituents of myelin and are small, cytoplasmic, and highly basic proteins exclusively expressed postnatally by oligodendrocytes. Due to a clustering of positively charged amino acids observed in the most abundant MOBP isoform similar to myelin basic protein (MBP) and P0, it was speculated that MOBP could function in myelin sheath compaction. The present report strongly supports this view. A direct comparison of MBP and proteolipid protein (PLP) gene expression with that of MOBP by in situ hybridization revealed a very similar regional distribution. It was found that MOBP expression was abundant in the rat CNS at postnatal day 15 (P 15) but is restricted to densely myelinated regions. In contrast to MBP and PLP, expression of MOBP was undetectable in the peripheral nervous system during the entire development. Interestingly, MOBP mRNA was localized in oligodendrocyte processes even at early postnatal stages and throughout development. MOBP showed a very specific timing of expression: in spinal cord and brain, MOBP gene expression occurred significantly later (2–3 days) than that of MBP and PLP, but slightly earlier than myelin oligodendrocyte glycoprotein gene expression. MOBP proteins appeared in spinal cord and brain stem also after MBP protein, suggesting that the MOBPs functionally act after the structural myelin proteins MBP and PLP. Our findings imply a function of MOBP during the late steps of myelin formation, presumably at the initiation of sheath compaction.  相似文献   

8.
Oligodendrocytes, the myelin-forming cells of the central nervous system, were cultured from newborn rat brain and optic nerve to allow us to analyze whether two transmembranous myelin proteins, myelin-associated glycoprotein (MAG) and proteolipid protein (PLP), were expressed together with myelin basic protein (MBP) in defined medium with low serum and in the absence of neurons. Using double label immunofluorescence, we investigated when and where these three myelin proteins appeared in cells expressing galactocerebroside (GC), a specific marker for the oligodendrocyte membrane. We found that a proportion of oligodendrocytes derived from brain and optic nerve invariably express MBP, MAG, and PLP about a week after the emergence of GC, which occurs around birth. In brain-derived oligodendrocytes, MBP and MAG first emerge between the fifth and the seventh day after birth, followed by PLP 1 to 2 d later. All three proteins were confined to the cell body at that time, although an extensive network of GC positive processes had already developed. Each protein shows a specific cytoplasmic localization: diffuse for MBP, mostly perinuclear for MAG, and particulate for PLP. Interestingly, MAG, which may be involved in glial-axon interactions, is the first myelin protein detected in the processes at approximately 10 d after birth. MBP and PLP are only seen in these locations after 15 d. All GC-positive cells express the three myelin proteins by day 19. Simultaneously, numerous membrane and myelin whorls accumulate along the oligodendrocyte surface. The sequential emergence, cytoplasmic location, and peak of expression of these three myelin proteins in vitro follow a pattern similar to that described in vivo and, therefore, are independent of continuous neuronal influences. Such cultures provide a convenient system to study factors regulating expression of myelin proteins.  相似文献   

9.
In submammalian animals including chicks, the retina contains oligodendrocytes (OLs), and axons in the optic fiber layer are wrapped with compact myelin within the retina; however, the expression of myelin genes in the chick retina has not been demonstrated yet. In the present study, we examined the expression of three myelin genes (proteolipid protein, PLP; myelin basic protein, MBP; cyclic nucleotide phosphodiesterase, CNP) and PLP in the developing chick retina, in comparison to the localization of Mueller cells. In situ hybridization demonstrated that all three myelin genes began to be expressed at E14 in the chick embryo retina. They are mostly restricted to the ganglion cell layer and the optic fiber layer, with a few exceptions in the inner nuclear layer where Mueller cells reside; however, PLP mRNA+ cells do not express glutamine synthetase, or vice versa. The present results elucidate that myelin genes are expressed only by OLs that are mostly localized in the innermost layer of the developing chick retina.  相似文献   

10.
In a light and electron microscopic immunocytochemical study we have examined the distribution of myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), and myelin/oligodendroglial glycoprotein (MOG) within CNS myelin sheaths and oligodendrocytes of adult Sprague-Dawley rats. Ultrastructural immunocytochemistry allowed quantitative analysis of antigen density in different myelin and oligodendrocyte zones: MBP was detectable in high density over the whole myelin sheath, but not in regions of loops, somata, or the oligodendrocyte plasma membrane. CNP reactivity was highest at the myelin/axon interface, and found in lower concentration over the outer lamellae of myelin sheaths, at the cytoplasmic face of oligodendrocyte membranes, and throughout the compact myelin. MOG was preferentially detected at the extracellular surface of myelin sheaths and oligodendrocytes and in only low amounts in the lamellae of compacted myelin and the myelin/axon border zone. Our studies, thus, indicate further the presence of different molecular domains in compact myelin, which may be functionally relevant for the integrity and maintenance of the myelin sheath.  相似文献   

11.
Steroid synthesis in rat brain cell cultures   总被引:1,自引:0,他引:1  
Primary cultures derived from neonatal rat forebrains were established and cultured for several weeks. They grow entirely as glial cultures composed of oligodendrocytes and astrocytes. Glial cells undergo maturation and differentiation in culture. This was shown by measuring the oligodendroglial enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a specific marker for expression of oligodendrocyte differentiation. CNPase activity increased from days 10-21 of culture. Both cell types were characterized by indirect immunofluorescence staining using monoclonal antibodies to galactocerebroside (Gal C) and myelin basic protein (MBP) for oligodendrocytes, and glial fibrillary acidic protein (GFAP) for astrocytes. Using the above criteria, we measured about 60% oligodendrocytes and 40% astrocytes after 3 weeks of culture. Oligodendrocytes, expressing Gal C and MBP, were highly immunoreactive to monospecific polyclonal antibodies to the cytochrome P-450scc, enzyme involved in the synthesis of pregnenolone from cholesterol. After incubation of glial cultures with [3H]mevalonolactone in the presence of mevinoline and trilostane, biosynthesis of [3H]cholesterol, [3H]pregnenolone (P) and [3H]pregn-5-ene-3 beta, 20 alpha-diol (20-OHP) was demonstrated. Steroid biosynthesis was related to oligodendroglial differentiation, as the initial and rapid rate of increase in CNPase activity was found to occur at the same time as the onset of steroid synthesis. Both reached a maximum at 3 weeks of culture and remained stable for several weeks. Steroid synthesis was increased by dibutyryl cAMP (0.2 mM), as well as by dexamethasone (10 nM). When aminoglutethimide, a potent inhibitor of cytochrome P-450scc, was added during the incubation of cells with [3H]mevalonolactone, [3H]cholesterol accumulated in the cells. After the release of aminoglutethimide blockade, [3H]20-OHP was the major steroid produced and released in the culture medium. The demonstration of de novo steroid biosynthesis and of the cholesterol side-chain cleavage cytochrome P-450 in normal rat glial cells brings additional support to the concept of "neurosteroids".  相似文献   

12.
An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(−/−) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(−/−) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases.  相似文献   

13.
Myocardial ischemia/reperfusion is characterized by oxidative stress and induction of proinflammatory cytokines. Interleukin (IL)-18, a member of the IL-1 family, acts as a proinflammatory cytokine, and is induced during various immune and inflammatory disorders. Therefore, in the present study we investigated whether IL-18 expression is regulated by cytokines and oxidative stress in cardiomyocytes. TNF-alpha induced rapid and sustained activation of NF-kappaB whereas H(2)O(2) induced delayed and transient activation. Both TNF-alpha and H(2)O(2) induced IL-18 mRNA and precursor protein in cardiomyocytes, and IL-18 release into culture supernatants. However, only TNF-alpha led to sustained expression. Expression of IL-18Rbeta, but not alpha, was induced by both agonists. TNF-alpha and H(2)O(2) induced delayed expression of IL-18 BP. Pretreatment with PDTC attenuated TNF-alpha and H(2)O(2) induced IL-18 and IL-18Rbeta, but not basal expression of IL-18Ralpha. These results indicate that adult cardiomyocytes express IL-18 and its receptors, and proinflammatory cytokines and oxidative stress regulate their expression via activation of NF-kappaB. Presence of both ligand and receptors suggests IL-18 impacts myocardial biology through an autocrine pathway.  相似文献   

14.
Abstract: We have conditionally immortalized oligodendrocytes isolated from normal and shiverer primary mouse brain cultures through the use of the retroviral vector ZIPSVtsA58. This vector encodes an immortalizing thermolabile simian virus 40 large T antigen (Tag) and allows for clonal selection by conferring neomycin (G418) resistance. We isolated 14 shiverer and 10 normal lines that expressed the early oligodendrocyte marker 2′,3′-cyclic nucleotide 3′-phosphodiesterase mRNA. These cell lines grew continuously at the permissive temperature (34°C) and displayed Tag nuclear immunostaining. On shifting to nonpermissive temperatures (39°C), the cells showed rapid arrested cell growth and loss of Tag staining. One line (N20.1) engineered from normal oligodendrocytes also expressed myelin basic protein (MBP) and proteolipid protein (PLP) mRNAs, genes normally expressed by mature, differentiated oligodendrocytes. No differences in any of the myelin-specific protein mRNA levels were observed in N20.1 cells grown at 39°C for >9 days compared with cells maintained at 34°C. Immunocytochemical staining revealed N20.1 cells to be positive for the oligodendrocyte surface markers—galactocerebroside, A007, and A2B5. However, MBP and PLP polypeptides could not be detected by western blot or immunocytochemical staining at either the permissive or nonpermissive temperature. Cell-free protein synthesis experiments indicated that the MBP mRNAs isolated from N20.1 cells were translatable and directed the synthesis of the 17-, 18.5-, and 21.5-kDa MBP isoforms. Analysis of the PLP/DM20 gene splice products by polymerase chain reaction indicated that the expression of DM20 mRNA predominated over that of PLP mRNA in this cell line. Because the cell line expressed the MBP and PLP genes, it represents a “mature” oligodendrocyte, but the splicing patterns of these genes indicate that it is at an early stage of “maturation’. This cell line has now been passaged >40 times with fidelity of phenotype and genotype.  相似文献   

15.
Although the germicide role of H(2)O(2) released during inflammation is well established, a hypothetical regulatory function, either promoting or inhibiting inflammation, is still controversial. In particular, after 15 years of highly contradictory results it remains uncertain whether H(2)O(2) by itself activates NF-kappaB or if it stimulates or inhibits the activation of NF-kappaB by proinflammatory mediators. We investigated the role of H(2)O(2) in NF-kappaB activation using, for the first time, a calibrated and controlled method of H(2)O(2) delivery--the steady-state titration--in which cells are exposed to constant, low, and known concentrations of H(2)O(2). This technique contrasts with previously applied techniques, which disrupt cellular redox homeostasis and/or introduce uncertainties in the actual H(2)O(2) concentration to which cells are exposed. In both MCF-7 and HeLa cells, H(2)O(2) at extracellular concentrations up to 25 microM did not induce significantly per se NF-kappaB translocation to the nucleus, but it stimulated the translocation induced by TNF-alpha. For higher H(2)O(2) doses this stimulatory role shifts to an inhibition, which may explain published contradictory results. The stimulatory role was confirmed by the observation that 12.5 microM H(2)O(2), a concentration found during inflammation, increased the expression of several proinflammatory NF-kappaB-dependent genes induced by TNF-alpha (e.g., IL-8, MCP-1, TLR2, and TNF-alpha). The same low H(2)O(2) concentration also induced the anti-inflammatory gene coding for heme oxygenase-1 (HO-1) and IL-6. We propose that H(2)O(2) has a fine-tuning regulatory role, comprising both a proinflammatory control loop that increases pathogen removal and an anti-inflammatory control loop, which avoids an exacerbated harmful inflammatory response.  相似文献   

16.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

17.
Bovine myelin/oligodendrocyte glycoprotein (MOG) was purified from a Wolfgram protein fraction of brain myelin by molecular sieving and preparative gel electrophoresis. The N-terminal sequence of this wheat germ agglutinin reacting glycoprotein was determined. Antibodies against purified MOG and synthetic N-terminal octapeptide of MOG were produced in rabbits. Respective affinity purified antibody preparations gave identical results on Western blots. Treatment with specific glycosidases indicated that the oligosaccharide chains of MOG are only of N-chain type. This glycoprotein seems to be restricted to mammalian species since it was not detected in other animal species, ranging from fish up to reptiles. Immunohistochemical investigations on rat brain sections revealed that MOG is restricted to myelin sheaths and oligodendrocytes, thus corroborating previous results obtained with the MOG 8-18C5 monoclonal antibody. Decreased staining pattern in Jimpy brain further attested its specific localization in myelin-related structures. The octapeptide site-specific antibodies were not reactive on brain sections which may be attributed to the burying of this N-terminal sequence in the membrane. These MOG polyclonal antibodies appear to be valuable tools for further studies concerning this minor glycoprotein.Abbreviations BSA bovine serum albumin - CNS central nervous system - DM-20 minor myelin proteolipid protein - MAG Myelin-associated glycoprotein - MBP myelin basic proteins - MOG Myelin/oligodendrocyte glycoprotein - OMgp Oligodendrocyte/Myelin glycoprotein - PAGE polyacrylamide gel electrophoresis - PBS phosphate buffered saline - PeptMOG n-terminal octapeptide of MOG - PLP major myelin proteolipid protein - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecylsulphate - TBS Tris buffered saline - WPF Wolfgram protein fraction - WGA Wheat germ agglutinin  相似文献   

18.
19.
In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oligodendrocyte glycoprotein), and peroxisomal markers [adrenoleukodystrophy protein, PMP70, acyl-CoA oxidase 1 (ACOX1), l -peroxisomal bifunctional enzyme, and catalase]. Using electron microscopy, peroxisomes were identified in the two cell lines. Gene expression (ATP-binding cassette, Abcd1 , Abcd2 , Abcd3 , and Acox1 ) involved in peroxisomal transport or β-oxidation of fatty acids was evaluated using quantitative PCR. 4-phenylbutyrate treatment increases expression of ACOX1, l -peroxisomal bifunctional enzyme, PLP, myelin oligodendrocyte glycoprotein, and CNPase, mainly in 158N cells. In both cell lines, 4-phenylbutyrate-induced ACOX1 and catalase activities while only Abcd2 gene was up-regulated in 158JP. Moreover, the higher mitochondrial activity and content observed in 158JP were associated with higher glutathione content and increased basal production of reactive oxygen species revealing different redox statuses. Altogether, 158N and 158JP cells will permit studying the relationships between peroxisomal defects, mitochondrial activity, and oligodendrocyte functions.  相似文献   

20.
Autoreactive T cells of CD4 and CD8 subsets recognizing myelin basic protein (MBP), a candidate myelin autoantigen, are thought to contribute to and play distinct roles in the pathogenesis of multiple sclerosis (MS). In this study we identified four MBP-derived peptides that had high binding affinity to HLA-A2 and HLA-A24 and characterized the CD8(+) T cell responses and their functional properties in patients with MS. There were significantly increased CD8(+) T cell responses to 9-mer MBP peptides, in particular MBP(111-119) and MBP(87-95) peptides that had high binding affinity to HLA-A2, in patients with MS compared with healthy individuals. The resulting CD8(+) T cell lines were of the Th1 phenotype, producing TNF-alpha and IFN-gamma and belonged to a CD45RA(-)/CD45RO(+) memory T cell subset. Further characterization indicated that the CD8(+) T cell lines obtained were stained with MHC class I tetramer (HLA-A2/MBP(111-119)) and exhibited specific cytotoxicity toward autologous target cells pulsed with MBP-derived peptides in the context of MHC class I molecules. These cytotoxic CD8(+) T cell lines derived from MS patients recognized endogenously processed MBP and lysed COS cells transfected with genes encoding MBP and HLA-A2. These findings support the potential role of CD8(+) CTLs recognizing MBP in the injury of oligodendrocytes expressing both MHC class I molecules and MBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号