首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Zhou Z  Zhang C  Zhang J  Tian Z 《PloS one》2012,7(5):e36928
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.  相似文献   

2.
Previous studies have shown that freshly isolated CD16+ NK cells are deficient in the expression of decay-accelerating factor (DAF), or CD55, a membrane regulator of C3 activation. In this study we investigated the significance, for NK cell-mediated lysis, of DAF expression on the target and effector cells. The effect of DAF expression on the susceptibility of NK cell targets was investigated by several means: first, DAF- cell lines were cloned from K562; second, the cloned DAF- cells were reconstituted with exogenous purified DAF; and third, anti-DAF F(ab')2 was used to block DAF function on the DAF+ K562 cells. Consistently, the presence of DAF in the target cell membrane, either naturally occurring or experimentally incorporated, afforded the target cell protection against lysis, and this protection could be blocked with anti-DAF. Similarly, targets for antibody-dependent cell-mediated cytotoxicity with exogenous DAF incorporated in their plasma membrane became less sensitive to antibody-dependent cell-mediated cytotoxicity by NK cells compared with the same target cells without incorporated DAF in their membranes. DAF incorporated in the plasma membranes of the effector NK cells made the NK cells less effective at killing K562 targets. The known function of DAF is to regulate C3 activation, and we were able to demonstrate that the isolated NK cell is capable of releasing C3. It is also possible that the participation of DAF in NK cell function represents a new, noncomplement-dependent function for DAF.  相似文献   

3.
Normal human peripheral blood lymphocytes (PBL) express several in vitro cytotoxic functions, among which are natural killer (NK), antibody-dependent cellular cytotoxicity (ADCC), and lectin-dependent cellular cytotoxicity (LDCC). The relationship of these various cytotoxic functions and the identity of cells involved has been a subject of controversy. Recently it was reported that NK and K for ADCC can be mediated by the same cell, suggesting that they constitute in large part a single subpopulation with multiple cytotoxic functions. The ability of this NK/K effector cell to mediate LDCC was examined here using the two target conjugate assay. The effector cells were Ficoll-Hypaque PBL or LGL-enriched fractions. The targets used were K562 or MOLT for NK, RAJI coated with antibody for ADCC, and RAJI coated with PHA or Con A or modified by NaIO4 for LDCC. In the two-target conjugate assay, one of the targets is fluorescein labeled for identification. The results show that (a) LDCC copurifies with NK/K and is enriched in the LGL fraction, as measured in both the 51Cr-release assay and the single-cell assay for cytotoxicity; (b) single effector cells simultaneously bind to NK or ADCC and LDCC targets, revealing that single cells bear binding receptors for all targets; and (c) single lymphocytes were not able to kill both bound NK/K and LDCC targets. However, significant two-target killing was obtained when both targets were NK targets, ADCC targets, LDCC targets, or one NK and one ADCC target. These results demonstrate that the NK and LDCC effector cells are distinct subpopulations copurified in the LGL fraction. In addition, the results show that lectin is unable to trigger globally an NK effector cell to mediate cytotoxicity against a bound NK insensitive target. Thus, although both NK and LDCC effector cells are present in the LGL fraction and can bind to both types of targets, the trigger of the lethal hit event is the function of specialized effector cells.  相似文献   

4.
We report herein that defective natural killer (NK) cell cytotoxicity, NK cytotoxic factor (NKCF) production and NK target binding ability of patients with chronic myelogenous leukemia (CML) are functionally restorable after short-term culture (less than 1 week) with recombinant interleukin-2 (rIL-2). We have previously reported that, despite normal to increased numbers of CD16+ large granular lymphocytes, fluorescence-activated-cell-sorted NK cells from CML patients are profoundly defective in NK cell activity and are unable to lyse the CML blast-crisis-derived, NK-sensitive target K562. Since we and others have also previously shown that the defective NK cytotoxicity from CML patients is restorable after 1-4 weeks of incubation with rIL-2, we therefore deemed it important to study the kinetics of IL-2-mediated NK restoration at earlier time intervals (less than 1 week). In the present report, we have demonstrated a significant restoration of NK cell cytotoxicity in CML patients against K562 after 5 days of short-term culture with rIL-2. In addition, recovery of NKCF production and restoration of target-binding capacity to normal levels by NK cells from CML patients were also observed after short-term (less than 1 week) rIL-2 treatment. Finally, we have demonstrated in the present report that adherent cells and peripheral-blood lymphoid cells from CML patients, as compared to normal controls, are unable to produce IL-1 beta and interferon-gamma, respectively, after stimulation with phorbol myristate acetate (IL-1 beta) and phytohemagglutinin-M (interferon-gamma).  相似文献   

5.
NK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression. Unexpectedly, although these clones expressed NKG2D and mediated a strong cytolytic activity toward K562, Daudi and allogeneic MHC-class I+ carcinoma cells, they were unable to lyse the autologous MHC-I- tumor cell line. This defect was associated with alterations in the expression of natural cytotoxicity receptor (NCR) by NK cells and the NKG2D ligands, MHC-I-related chain A, MHC-I-related chain B, and UL16 binding protein 1, and the ICAM-1 by tumor cells. In contrast, the carcinoma cell line was partially sensitive to allogeneic healthy donor NK cells expressing high levels of NCR. Indeed, this lysis was inhibited by anti-NCR and anti-NKG2D mAbs, suggesting that both receptors are required for the induced killing. The present study indicates that the MHC-I-deficient lung adenocarcinoma had developed mechanisms of escape from the innate immune response based on down-regulation of NCR and ligands required for target cell recognition.  相似文献   

6.
Natural killer (NK) cells belong to the innate arm of the immune system and though activated NK cells can modulate immune responses through the secretion of cytokines, their primary effector function is through target cell lysis. Accordingly, cytotoxicity assays are central to studying NK cell function. The 51Chromium release assay, is the “gold standard” for cytotoxicity assay, however, due to concerns over toxicity associated with the use and disposal of radioactive compounds there is a significant interest in non-radioactive methods. We have previously used the calcein release assay as a non-radioactive alternative for studying NK cell cytotoxicity. In this study, we show that the calcein release assay varies in its dynamic range for different tumor targets, and that the entrapped calcein could remain unreleased within apoptotic bodies of lysed tumor targets or incompletely released resulting in underestimation of percent specific lysis. To overcome these limitations, we developed a novel cytotoxicity assay using the Cellometer Vision Image Cytometer and compared this method to standard calcein release assay for measuring NK cell cytotoxicity. Using tumor lines K562, 721.221, and Jurkat, we demonstrate here that image cytometry shows significantly higher percent specific lysis of the target cells compared to the standard calcein release assay within the same experimental setup. Image cytometry is able to accurately analyze live target cells by excluding dimmer cells and smaller apoptotic bodies from viable target cell counts. The image cytometry-based cytotoxicity assay is a simple, direct and sensitive method and is an appealing option for routine cytotoxicity assay.  相似文献   

7.
Mechanism of cell contact-mediated inhibition of natural killer activity   总被引:1,自引:0,他引:1  
Natural killer cell activity is inhibited by primary cultures of monolayer cells. In this study, we analyzed the mechanism of the inhibition. Inhibited NK cells showed unaltered binding capacity to NK sensitive K562 cells. The orientation of the effector cells' actin-containing microfilaments, an event known to occur during the programming for the lysis stage in lytic conjugates, was unaffected by the inhibition. In single cell cytotoxicity experiments, the number of killer cells among conjugate-forming cells was reduced. The capacity of the inactivated NK cells to secrete cytotoxic factors upon stimulation with Con A was also impaired. Both NK-resistant inactivating target cells and NK-sensitive K562 cells were sensitive to the toxic factors secreted by NK cells. Thus, the results indicate that the target cell-mediated inactivation of NK cell is based on a block in the lethal hit stage, possibly due to reduced release of toxic factor(s) from the effector cells. The capacity of inactivated effector cells to mediate antibody-dependent cellular cytotoxicity was unimpaired, suggesting that the contact-mediated inhibition of cytotoxicity selectively affects NK cells.  相似文献   

8.
The mechanisms involved in susceptibility or resistance of neoplasic cells to lysis by NK cells are not well known. We have recently described a 12-kDa factor (NK-RIF), produced and released by different tumor cell lines, making K562 resistant to NK lysis without affecting the cytotoxic function of NK effector cells. In this paper we further study the mechanism involved in NK resistance of K562 mediated by NK-RIF and its biological implications. The results show that NK-RIF does not affect the binding capacity of target and effector cells nor the levels of HLA class I antigen expression on the target cells, as a proof that resistance to NK-mediated lysis is not always associated with a defect in target effector binding or with an increased MHC class I antigen expression. However NK-RIF-treated K562 loses its capacity to induce NK cell activation and the subsequent capacity to release NKCF and makes K562 resistant to lysis by NKCF. Therefore our results show that induction of resistance to NK cytotoxicity can be the result of the modulation of target structures responsible for inducing effector cell activation without affecting target/effector binding molecules. This indicates that the structures involved in adherence and activation of NK cells have a different nature and that molecules other than HLA participate in NK resistance.  相似文献   

9.
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.  相似文献   

10.
Unstimulated human peripheral blood lymphocytes were depleted of K cells, which mediate antibody-dependent cellular cytotoxicity (ADCC) without removing NK cells, which mediate natural killing (NK). K cell depletion was achieved by buoyant centrifugation removal of lymphocytes that bound to glutaraldehyde-treated P815-AB cells at high lymphocyte-to-target ratios. Likewise, NK cells were removed with glutaraldehyde-treated K562 cells without removing K cells. Furthermore, both cytotoxic cell populations were observed directly in one agarose single-cell cytotoxic assay (ASCA) using P815-AB and K562 cells simultaneously as target cells. Moreover, the percentage of total cytotoxic cells was equal to the sum of the percentage of K and NK cells observed in separate ASCA. Collectively, these results indicate that K cells and NK cells are distinct subsets of FcR-bearing lymphocytes. One subset, K cells, has more avid Fc receptors (fcR) than NK cells and are 'activated' via thier FcR to kill antibody-coated target cells. The second subset, NK cells, have less avid FcR and are not 'activated' through their FcR to kill antibody-coated target cells.  相似文献   

11.
NK cell-mediated cytotoxicity results from membrane interactions between NK effector and target cells. The role of membrane fluidity in these events is not known. The present study was undertaken to investigate the effect of changes in membrane lipid fluidity of NK effector and NK-sensitive target cells on the lytic pathway of NK cell-mediated cytotoxicity. Fluidity was modulated by various lipids and measured by fluorescence polarization. NK effector cells treated with phosphatidylcholine complexed with polyvinylpyrrolidone (PVP) and bovine serum albumin (BSA) showed increased membrane fluidity. This fluidization of the effector cell membrane resulted in a significant inhibition of cytotoxic activity in the 51Cr-release assay. Single cell analysis revealed that the inhibition was due to a decrease in the frequency of NK target conjugates and reduced killing of conjugated targets. Rigidification of the NK effector cell membranes by treatment with cholesteryl hemisuccinate complexed with PVP and BSA also resulted in inhibition of cytotoxicity. This inhibition was post binding, because binding was increased and lysis was abrogated. Fluidization of K562 target cell membranes caused a slight but insignificant increase in their lysis by NK cells without affecting the binding step. On the other hand, rigidification of K562 membranes decreased the sensitivity of these target cells to lysis. Single cell analysis revealed that this inhibition of NK lysis is post binding, because the frequency of killers was significantly decreased. It was also shown that membrane rigidification of target cells that were programmed for lysis during the lethal hit stage and subsequently separated from effector cells, rendered the programmed cells resistant to killing during the killer cell-independent lysis step. These results demonstrate that fluidization or rigidification of the plasma membrane of either effector or target cells affect different stages of the NK cell-mediated cytolytic events.  相似文献   

12.
Highly purified populations of large granular lymphocytes (LGL) have been shown to mediate natural killer (NK) cell activity. The mechanism of target cell killing by NK cells is as yet undefined; however, it has been postulated that such killing may involve soluble cytotoxic factors produced and secreted by NK cells. The data presented show that NK-sensitive, but not NK-resistant, tumor cell lines induce highly purified populations of human LGL to produce factors with cytotoxic and/or cytostatic activities. We have identified one of these factors as tumor necrosis factor-alpha (TNF-alpha), and have shown that production of this factor is enhanced by recombinant human interferon-gamma (rHuIFN-gamma). We have also examined the role of TNF-alpha in the cytotoxic function of NK cells. The data show that although highly purified LGL populations produce low levels of TNF-alpha, the cytotoxic/cytostatic activity of this lymphokine on tumor target cells does not correlate with the cytotoxic activity of highly purified populations of LGL on tumor target cells. Furthermore, NK cell-mediated cytotoxicity is not reliably inhibited by antibodies directed against various epitopes of recombinant human TNF-alpha and/or recombinant TNF-beta (lymphotoxin) or rHuIFN-gamma. These data show that although TNF-alpha is produced by highly purified NK-containing LGL cell populations, this factor does not appear to be responsible for NK cell cytotoxicity against classical NK target cells such as Molt-4 or K562. We suggest that NK function can be attributed to a combination of factors rather than to a single factor alone, and that at least two major phenomena are involved in LGL function: the rapid cytotoxic events which lead to the cell lysis measured in classical in vitro NK assays such as against K562; and the release of factors such as TNF-alpha with cytotoxic/cytostatic activities which would inhibit the growth of invading tumor cells in vivo.  相似文献   

13.
Fresh circulating PBMC from HIV-1 seropositive individuals have been found to mediate specific, non-MHC restricted lysis of targets expressing the major envelope glycoprotein of HIV-1, gp120, in 6-h 51Cr release assays. This gp120 specific cell-mediated cytotoxicity (CMC) is broadly reactive against target cells infected with a wide range of viral isolates, is IL-2 augmentable, and is mediated by a CD16+, Leu-7+, CD15-, CD3- population of NK/K cells. The presence of FcR (CD16) on these cells suggested that the lytic specificity for gp120 might be directed by cytophilic antibody bound to the cell surface. Affinity purified F(ab')2 antibody fragments specific for the Fc and F(ab')2 portions of human IgG were used in attempts to block gp120 specific lysis. A 1/50 dilution of these antibodies inhibited gp120 specific cytolytic activity by more than 90% while exhibiting a minimal effect on NK/K cell lysis of K562 targets. The blocking activity of these fragments demonstrates the direct involvement of cytophilic antibody in CMC. In attempts to isolate this cytophilic anti-HIV-1 antibody, short 56 degrees C incubations were used to dissociate antibodies from the surface of PBMC of seropositive individuals. The supernatants generated in this manner exhibited specific gp120 activity in antibody-dependent cellular cytotoxicity assays. The ability of Staphylococcal protein A to remove this activity confirms the presence of cytophilic antibody on freshly isolated PBMC. Selective enrichment of specific cell subpopulations revealed the origin of the cytophilic antibody to be CD16+ NK/K cells and not B cells, T cells, or monocytes/macrophages. These studies show that the gp120-specific CMC seen in HIV-1 seropositive individuals is directed by cytophilic antibody bound to circulating CD16+ NK/K cells and represents a form of direct antibody-dependent cellular cytotoxicity which may provide a primary cytotoxic host defense.  相似文献   

14.
Role of interferon in natural kill of HSV-1-infected fibroblasts   总被引:8,自引:0,他引:8  
The production of interferon during natural killer (NK) assays against HSV-1-infected fibroblasts (NK(HSV-1)) was studied to determine whether this interferon was responsible for inducing the preferential lysis of herpes-virus-infected target cells over uninfected target cells. The interferon produced during NK(HSV-1) assays was analyzed and found to have the properties of HU-IFN-alpha. Little or no IFN was produced during NK assays against uninfected fibroblasts (NK(FS)) or K562 (NK(K562)) cells. Although the appearance of interferon in the culture supernatants seemed to parallel the development of cytotoxicity during NK(HSV-1) assays, the levels of cytotoxicity and IFN generated did not correlate, arguing against a strict quantitative dependence of cytotoxicity upon IFN production. NK(K562) and NK(FS) cytotoxicity developed with little or no production of IFN. When IFN-pretreated effector cells were used, there was still a preferential lysis of infected over uninfected target cells. This preferential lysis by IFN-treated effector cells of infected over uninfected targets was seen as early as 2 hr into the assay. Anti-IFN antibodies added to the NK assays, although neutralizing all the IFN produced during the assays, had no effect on NK(FS) or NK(K562) cytotoxic activity and caused a slightly reduction of NK(HSV-1) activity only in one of three experiments. We conclude that although IFN is generated during NK(HSV-1) assays, this IFN cannot solely account for the increased lysis of infected over uninfected cells and that NK(HSV-1) activity is in some other way dependent on the virus infection.  相似文献   

15.
Toll-like receptor (TLR) ligands are potent inducers of the innate immune system, of which NK and NKT cells play an important role. We examined the direct activation of highly purified human NK and/or NKT cells with known TLR ligands. NK/NKT cells were positive for all known TLR mRNA (TLR1-10). Ligands for TLR2-5 induced production of significant amounts of IFN-gamma by purified NK cells. However, a TLR9 ligand failed to induce significant levels of the cytokine. NK cells were depleted from PBMCs to confirm that they were the main source of IFN-gamma following treatment with TLR ligands, which resulted in a significant decrease in cytokines. The direct effects of TLR ligands on NK cytotoxicity were determined using 51Cr-labeled K562 target cells. Ligands for TLR2-5 were potent inducers of NK cell cytotoxicity, a TLR9 ligand was not. Our results suggest that TLR ligands can directly stimulate and enhance NK cell cytokine production and induce cytotoxic activities.  相似文献   

16.
Maintenance and regulation of natural killer (NK) cell activity in human bone marrow cultures were studied using K562 leukemia cells as targets. Culture of bone marrow cells in medium supporting long-term generation of myeloid cells resulted in a rapid loss of NK activity in 1-3 days. In contrast, antibody-dependent cytotoxicity to an NK-resistant tumor was maintained for more than 7 weeks. Horse serum, a component of the myelopoietic culture medium, was found to diminish NK cytotoxicity of blood and bone marrow cultures whereas hydrocortisone supplement did not. In addition, an adherent cell is present in bone marrow which greatly inhibits NK activity. Nonadherent bone marrow cells exhibited higher cytotoxicity than unfractionated cells at all days of culture; adherent cells were not cytotoxic to K562. Purified adherent marrow cells inhibited the cytotoxic capacity of nonadherent blood or marrow mononuclear cells during coculture. Indomethacin, an inhibitor of protaglandin synthesis, augmented levels of NK activity in cultures of bone marrow cells, indicating that macrophages may be suppressing this effector function via prostaglandins. Further identification of the adherent suppressor cells came from experiments in which suppression was prevented by treatment of the adherent cells with monoclonal OKM1 antibody plus complement. This study shows that bone marrow-adherent OKM1-positive cells, presumably macrophages, negatively regulate NK activity, and it defines conditions for analysis of the generation and/or positive regulation of NK cells in human bone marrow.  相似文献   

17.
Temporal changes in intracellular Ca2+ concentration, [Ca2+]i, of resting human peripheral blood NK cells in response to target cell binding were evaluated by flow cytometry. [Ca2+]i was significantly elevated in PBL and purified NK cells bound to NK-sensitive K562 and HSB2 target cells, but not in those bound to NK-resistant MD1 B-lymphoblastoid cells. Thus, a) the ability of a target cell to elicit a Ca2+ flux response correlated with its sensitivity to lysis of NK cells, and b) adhesion alone was not a sufficient stimulus for response induction. Conjugates of NK cells bound to K562 target cells were sorted onto agarose-coated slides on the basis of relative NK cell [Ca2+]i and evaluated in 19-hr single cell agarose cytotoxicity assays. In contrast to those with basal levels of [Ca2+]i, NK cells with elevated [Ca2+]i bound more strongly to target cells, as judged by the stability of conjugates to sort-related shear forces (p less than 0.01), and more frequently killed the target cell to which they were attached (p less than 0.05). Temporal fluctuations in [Ca2+]i were observed in target-bound NK cells in both the presence and absence of extracellular Ca2+. Thus, influx of extracellular Ca2+ and release of Ca2+ from internal stores both appeared to contribute to the NK cell Ca2+ flux response triggered by adhesion to appropriate target cells. These results support the hypothesis that such fluctuations in NK cell [Ca2+]i constitute an early signal flagging the occurrence of NK cell recognition.  相似文献   

18.
The sensitivity of target cells to natural killer (NK) cell-mediated cytotoxicity was investigated. Five target cell lines were examined for susceptibility to killing by activated NK cells in a 4-hour cytotoxicity assay: one of them (K562) was highly sensitive, while the other four were resistant. However, the four NK-resistant target cell lines were fully susceptible to lysis when the assay was extended to 24 h. The cytotoxic cells that killed the NK-resistant target cells in a 24-hour assay were plastic- and nylon wool-nonadherent human peripheral blood mononuclear cells (PBMC) and their cytotoxicity was increased by interferon-alpha, interferon-gamma, and interleukin-2. Further, the cytotoxic activity of PBMC in the long-term assay was associated with large granular lymphocytes purified on a Percoll gradient, that killed the NK-sensitive cell line K562 in a 4-hour assay. All of the above are general criteria to qualify the cytotoxic cells as NK cells. Thus, the NK-resistant phenotype may not reflect absolute immunity to NK-mediated lysis, but it may reflect the different rates at which various target cell lines can be killed.  相似文献   

19.
NK cells are key components of the immune response to virally infected and tumor cells. Recognition of target cells initiates a series of events in NK cells that culminates in target destruction via directed secretion of lytic granules. Ral proteins are members of the Ras superfamily of small GTPases; they regulate vesicular trafficking and polarized granule secretion in several cell types. In this study, we address the role of Ral GTPases in cell-mediated cytotoxicity. Using a human NK cell line and human primary NK cells, we show that both Ral isoforms, RalA and RalB, are activated rapidly after target cell recognition. Furthermore, silencing of RalA and RalB impaired NK cell cytotoxicity. RalA regulated granule polarization toward the immunological synapse and the subsequent process of degranulation, whereas RalB regulated degranulation but not polarization of lytic granules. Analysis of the molecular mechanism indicated that Ral activation in NK cells leads to assembly of the exocyst, a protein complex involved in polarized secretion. This assembly is required for degranulation, as interference with expression of the exocyst component Sec5 led to reduced degranulation and impaired cytotoxicity in NK cells. Our results thus identify a role for Ral in cell-mediated cytotoxicity, implicating these GTPases in lymphocyte function.  相似文献   

20.
Lipoxin A (5,6,15L-trihydroxy-7,9,11,13-eicosatetraenoic acid) and lipoxin B (5D,14,15-trihydroxy-6,8,10,12-eicosatetraenoic acid), two newly isolated compounds derived from the oxygenation of arachidonic acid in human leukocytes, inhibit the cytotoxic activity of human natural killer (NK) cells. Dose-response studies showed that both lipoxin A and lipoxin B inhibit, at submicromolar concentrations (ID50 10(-7) M), NK cell activity assayed against K562 target cells. Prostaglandin E2 (PGE2) also inhibited cytotoxicity, whereas both 15-HETE (5(S)-hydroxy-5,8,11,13-eicosatetraenoic acid) and leukotriene B4 (synthetic and biologically derived) were ineffective. PGE2 stimulated a time- and dose-dependent increase in intracellular cAMP, which was accompanied by a decrease in NK target cell binding. Lipoxin A and lipoxin B did not elevate intracellular cAMP, nor did they inhibit target cell binding. Together these findings suggest that lipoxin A and lipoxin B abrogate NK cell cytotoxicity at a step distal to target effector cell recognition. In contrast, PGE2 appears to exert its effect, at least in part, on cytotoxicity indirectly by decreasing the binding between target and effector cells (in vitro). Moreover, they suggest that novel oxygenated derivatives of arachidonic acid (i.e., lipoxin A, lipoxin B) may regulate the activities of NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号