首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Retrotransposons (RTNs) constitute informative molecular markers for plant species as a result of their ability of integrating into a multitude of loci throughout the genome and thereby generating insertional polymorphisms between individuals. Inter-retrotransposon amplified polymorphisms (IRAPs) and the retrotransposon-microsatellite amplified polymorphisms (REMAPs) are marker systems based on long terminal repeats (LTRs) RTNs, developed for plants, that have been widely used for evolution, genetic diversity, DNA fingerprinting of cultivars and varieties, genetic mapping linkage and for detection of genetic rearrangements induced by polyploidisation. In the present study, we aimed to analyse the genetic variability among 48 Old Portuguese bread wheat cultivars using both IRAP and REMAP markers. Five IRAP and six REMAP primer combinations were used. IRAP produced 103 polymorphic fragments in a total of 113 bands. On average, 22.6 bands were amplified per IRAP primer combination. The bands ranged in size from 250 to 5000 bp. The REMAP primer combinations allowed the amplification of 53 bands, 51 of them polymorphic. An average of 8.8 REMAP bands was scored per primer combination. The REMAP bands ranged from 250 to 3000 bp. Both marker systems presented high percentages of polymorphism. However, IRAP markers were suitable for detecting genetic variability at the individual level and did not differentiate higher taxa. The REMAP maker system allowed the clustering by botanical variety and identified most of the homonym bread wheat cultivars.  相似文献   

2.
Four molecular markers, including inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), sequence-specific amplified polymorphism (SSAP), and amplified fragment length polymorphism (AFLP), were compared in terms of their informativeness and efficiency for analysis of genetic relationships among 28 genotypes in the genus Diospyros. The results were as follows: (1) the highest level of detected polymorphism were observed for IRAP; (2) AFLP was the most efficient marker system due to the simultaneous detection of abundant polymorphism markers per single reaction; (3) the marker index (MI) value was lower for SSAP than for AFLP, but SSAP had a higher level of detected polymorphism than AFLP; (4) the correlation coefficients of similarity were statistically significant for all four marker systems; (5) the four molecular markers yielded similar phylogenetic trees. To our knowledge, this was the first detailed report of a comparison of performance among three retrotransposon-based molecular markers (IRAP, REMAP, SSAP) and the AFLP technique (DNA-based molecular marker) on a set of samples of Diospyros. The results provide guidance for future efficient use of these molecular methods in the genetic analysis of Diospyros.  相似文献   

3.
IRAP and REMAP for retrotransposon-based genotyping and fingerprinting   总被引:1,自引:0,他引:1  
Retrotransposons can be used as markers because their integration creates new joints between genomic DNA and their conserved ends. To detect polymorphisms for retrotransposon insertion, marker systems generally rely on PCR amplification between these ends and some component of flanking genomic DNA. We have developed two methods, retrotransposon-microsatellite amplified polymorphism (REMAP) analysis and inter-retrotransposon amplified polymorphism (IRAP) analysis, that require neither restriction enzyme digestion nor ligation to generate the marker bands. The IRAP products are generated from two nearby retrotransposons using outward-facing primers. In REMAP, amplification between retrotransposons proximal to simple sequence repeats (microsatellites) produces the marker bands. Here, we describe protocols for the IRAP and REMAP techniques, including methods for PCR amplification with a single primer or with two primers and for agarose gel electrophoresis of the product using optimal electrophoresis buffers and conditions. This protocol can be completed in 1-2 d.  相似文献   

4.
AIM: To develop a diagnostic assay based on polymerase chain reaction for the detection of Magnaporthe grisea from infested rice seeds. METHODS AND RESULTS: Primers were designed based on the nucleotide sequence of the mif 23, an infection-specific gene of M. grisea. The primers amplified target DNA from genetically and geographically diverse isolates of the pathogen. The lowest concentration of template DNA that led to amplification was 20 rhog. No PCR product was detected when DNA from other fungi was used, indicating the specificity of the primers. With this PCR based seed assay, M. grisea was detected in rice seedlots with infestation rates as low as 0.2%. CONCLUSION: The PCR detection of M. grisea is simple, rapid, specific, sensitive and suitable for the routine detection of the pathogen in infested seeds. SIGNIFICANCE AND IMPACT OF THE STUDY: Introduction of the blast fungus into new areas where it has not been previously recorded could be avoided by the detection of infested seedlots. A PCR-based seed assay could facilitate risk assessment of naturally infested rice seeds; help design management programs and optimize fungicide use.  相似文献   

5.
Inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) techniques were successfully applied, for the first time, to analyze genetic diversity among 92 ginger landraces collected from north-western Himalayan region of India. Six IRAP primer/combinations generated 75 loci with an average of 12 loci/primer displaying an overall polymorphism of 95.95 %. On the other hand, twenty five REMAP primer combinations produced 414 loci with 96.5 % polymorphism. IRAP showed maximum Rp (5.39) and PIC (0.28) values, while the same in REMAP was observed to be 10.92 and 0.34. Cluster analysis using Jaccard’s similarity coefficient for IRAP and REMAP data ranged between 0.21 to 1.0 and 0.21 to 0.85, respectively distinguishing all the genotypes with diverse genetic makup. The results also confirmed the presence of sukkula retrotransposon (RT6) in the ginger genome which effectively acted as genetic marker revealing high regional genetic diversity in the ginger gene pool. The study will help in giving insight to the genetic constitution of vegetatively grown ginger crop and for its further utilization in improvement, conservation and management programmes.  相似文献   

6.
7.
Retrotransposons play an important role in plant genetic instability and genome evolution. Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. In this study, suppression polymerase chain reaction was used, for the first time, to develop retrotransposon long terminal repeat (LTR) and polypurine tract (PPT) primers in Japanese persimmon (Diospyros kaki Thunb.), which were then employed for germplasm identification by means of interretrotransposon-amplified polymorphism (IRAP), sequence-specific amplified polymorphism (SSAP) and retrotransposon-microsatellite-amplified polymorphism (REMAP) molecular markers. The results showed that 16 out of 26 primers produced expected amplifications and abundant polymorphisms by IRAP in 28 genotypes of Diospyros. Moreover, some of these primers were further successfully used in REMAP and SSAP analysis. Each type of molecular markers produced unique fingerprint in 28 genotypes analyzed. Among the primers/primer combinations, two IRAP primers and four SSAP primer combinations could discriminate all of the germplasm solely. Further comparative analysis indicated that IRAP was the most sensitive marker system for detecting variability. High level of retrotransposon insertion polymorphisms between bud sports were detected by IRAP and SSAP, and the primers/primer combinations with powerful discrimination capacity for two pairs of bud sports lines were further obtained. Additionally, possible genetic relationships between several Japanese persimmon were discussed. To our knowledge, this is the first report on the development of retrotransposon LTR and PPT primers in Diospyros, and the retrotransposon primers developed herein might open new avenue for research in the future.  相似文献   

8.
Retrotransposons are ubiquitous components of plants genomes, making them useful molecular markers for genetic diversity studies. We used inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers to assess genetic diversity and survey activity of LTR retrotransposon elements in 106 sunflower (Helianthus annuus L.) genotypes from different research centers. We found 118 (out of 128) and 113 (out of 120) polymorphic loci using 14 IRAP and 14 REMAP primers, respectively. The Mantel test between IRAP and REMAP cophenetic matrices revealed low correlation (r = 0.55) between them. Dice similarities based on combined (IRAP + REMAP) data ranged from 0.34 to 0.93 among (“11 × 12” and “F1250/03”) and (“HA335B” and “TMB51”) genotypes, respectively. Classification of genotypes using the Dice similarity matrix derived from IRAP+REMAP data based on the un-weighted pair-group method using the arithmetic average algorithm resulted in nine distinct groups. The studied genotypes were divided into seven groups considering their origins (research centers). Classification of genotypes can be useful to assess the genetic variation and gene flow between and within research centers. Analysis of molecular variance based on IRAP+REMAP data revealed a higher level of genetic variation within (94%) than between (6%) research centers. A high amount of gene flow was detected among USDA, ASGROW, and ENSAT groups. Because environmental factors have no influence on molecular markers, the construction of heterotic groups based on retrotransposon markers will be useful for the selecting of parents with a high probability of producing superior hybrids.  相似文献   

9.
稻瘟病菌变异菌株的AFLP分析   总被引:1,自引:0,他引:1  
利用94对AFLP引物对3个起始菌株和9个致病性变异菌株进行分析,其中49对引物可以区别出不同菌株类型,辨别变异菌株与其起始菌株的关系,以及起始菌株间的亲缘关系。9个变异菌株中5个菌株的条带数减少1~3条,4个菌株条带数没有明显变化。结果还表明,致病性及其他特征变异似乎与条带数缺失多少相关联。  相似文献   

10.
利用94对AFLP引物对3个起始菌株和9个致病性变异菌株进行分析,其中49对引物可以区别出不同菌株类型,辨别变异菌株与其起始菌株的关系,以及起始菌株间的亲缘关系。9个变异菌株中5个菌株的条带数减少1~3条,4个菌株条带数没有明显变化。结果还表明,致病性及其他特征变异似乎与条带数缺失多少相关联。  相似文献   

11.
水稻品种多样性田间稻瘟病菌群体遗传结构分析   总被引:4,自引:0,他引:4  
利用稻瘟病菌的一段倒位重复序列Pot2设计的一对引物,采用rep—PCR分子指纹技术对来自石屏县净种杂交稻田块、净种糯稻田块以及间种杂交稻糯稻田间的251个稻瘟病单孢分离菌株进行扩增.结果表明,所有供试菌株均分别扩增到9—17条DNA带,大小从400bp到23kb左右,但大多数带主要集中在5—10kb之间.所有菌株共扩增出的DNA指纹带中,约65%的为多态性DNA带,35%的为共同扩增带.将供试菌株扩增带诺进行聚类分析,比较间裁与净载田间病菌群体遗传结构的组成差异结果表明,在不同遗传相似水平,菌株遗传宗群复杂度与栽培方式有一定相关性。间栽田间病菌遗传宗群较净栽田问复杂,为3—5个,且优势宗群群不明显;而在净栽糯稻或净栽杂交稻田间遗传宗群较为简单,只有1—3个,且优势宗群明显.本试验结果证明水稻品种多样性有利于稻瘟病菌稳定化选择。  相似文献   

12.
Although microsatellite or simple sequence repeat (SSR) markers have several advantages, few have been developed in fungi. The goal of this study was to identify and characterize SSR-containing loci in the filamentous ascomycete Magnaporthe grisea, the causal agent of rice blast disease, and to add these markers to an integrated genetic map of this species [Theor. Appl. Genet. 95 (1997) 20]. We have constructed and screened a microsatellite-enriched small-insert genomic library as well as exploited both publicly available and one proprietary databases for identification of M. grisea SSR containing sequences. Twenty-four out of 49 primer pairs designed to amplify SSR, produced unambiguous polymorphic products in our test population of six isolates. The number of alleles at each locus ranged from two to six when assayed on 3% agarose gels. Twenty-three of the primer pairs amplified polymorphic products between Guy11 and 2539, the parents of a cross from which a genetic map for M. grisea has been established. Genetic analysis showed that all the markers segregated in the expected 1:1 ratio and map positions were determined for all 23 loci.  相似文献   

13.
Aims:  Dwarf bunt of wheat, caused by Tilletia controversa Kühn, is a destructive disease on wheat as well as an important international quarantined disease in many countries. The objective of this investigation was to develop a diagnostic molecular marker generated from amplified fragment length polymorphism (AFLP) for rapid identification of T . controversa .
Methods and Results:  A total of 30 primer combinations were tested by AFLP to detect DNA polymorphisms between T. controversa and related species. The primer combination E08/M02 generated a polymorphic pattern displaying a 451-bp DNA fragment specific for T. controversa . The marker was converted into a sequence-characterized amplified region (SCAR), and specific primers (SC-0149/SC-02415), designed for use in PCR detection assays, amplified a unique DNA fragment in all isolates of T. controversa , but not in the related pathogens. The detection limit with the primer set SC-0149/SC-02415 was 10 ng of DNA which could be obtained from 11  μ g of teliospores in a 25- μ l PCR reaction.
Conclusions:  An approach to distinguish T. controversa from similar pathogenic fungi has been developed based on the use of a SCAR marker.
Significance and Impact of the Study:  Development of the simple, high throughput assay kit for the rapid diagnosis of dwarf bunt of wheat and detection of T. controversa is anticipated in further studies.  相似文献   

14.
The Sequence-Specific Amplification Polymorphism (S-SAP) method, and the related molecular marker techniques IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism), are based on retrotransposon activity, and are increasingly widely used. However, there have been no systematic analyses of the parameters of these methods or of the utility of different retrotransposon families in producing polymorphic, scorable fingerprints. We have generated S-SAP, IRAP, and REMAP data for three barley (Hordeum vulgare L.) varieties using primers based on sequences from six retrotransposon families (BARE-1, BAGY-1, BAGY-2, Sabrina, Nikita and Sukkula). The effect of the number of selective bases on the S-SAP profiles has been examined and the profiles obtained with eight MseI+3 selective primers compared for all the elements. Polymorphisms detected in the insertion pattern of all the families show that each can be used for S-SAP. The uniqueness of each transposition event and differences in the historic activity of each family suggest that the use of multiple retrotransposon families for genetic analysis will find applications in mapping, fingerprinting, and marker-assisted selection and evolutionary studies, not only in barley and other Hordeum species and related taxa, but also more generally.  相似文献   

15.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

16.
稻瘟病菌T-DNA插入方法优化及其突变体分析   总被引:10,自引:0,他引:10  
优化了农杆菌介导转化稻瘟病菌获得T-DNA插入突变的条件,包括选择转化子的潮霉素B用量,抑制农杆菌的抗生素头孢噻肟钠和羧苄青霉素的配比,不同转化阶段培养基的选择等。转化1×106个孢子平均可获得约500个左右的转化子,PCR和TAILPCR检测表明约85%转化子中含T-DNA插入。对1520个突变体进行形态变异观察,发现菌落颜色突变的有15个;随机取58个突变体进行比较,发现产孢量减少的4个,孢子萌发率降低的8个,附着胞形成率降低的9个;还获得对水稻品种C101LAC(Pi-1)和751127(Pi-9)致病的突变体,为进一步克隆相应的无毒基因奠定了基础。  相似文献   

17.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

18.
Cowpea [Vigna unguiculata L. (Walp)] is grown mainly for its protein-rich grains and is consumed in various forms in sub-Saharan Africa. Average grain yield in farmers’ fields is generally low due to a number of biotic and abiotic stresses. One hundred and six cowpea accessions from Ghana, which had previously been evaluated for seedling drought tolerance, were used for this study. This paper attempts to use three multi-locus PCR-based molecular markers; simple sequence repeats (SSR), inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphisms (REMAP), to analyse genetic diversity in the cowpea accessions. Analysis of the polymorphic bands data indicated that 101 alleles were amplified among 121 cowpea genotypes (83.4%) from 16 SSR primer pairs out of a total of 30 SSR primer pairs. Likewisely, a total of 66 (54.5%) polymorphic bands were obtained from IRAP and a total of 114 (94.2%) highly polymorphic bands obtained from REMAP analysis. The outcome indicated the highly polymorphic nature of the DNA markers, as small groups of these molecular markers were found to be able to identify each of the accessions used. Microsatellite markers (SSRs) and retrotransposon-based markers, like IRAP and REMAP, were found to be highly polymorphic and informative, suggesting that genomic fingerprinting has a major role in characterizing populations.  相似文献   

19.
Minyan  Fang  Leiyan  Yan  Zhengyi  Wang  Degang  Zhang  Zhonghua  Ma 《Journal of Phytopathology》2009,157(9):568-572
Baseline sensitivity of Magnaporthe grisea to a sterol demethylation inhibitor (DMI) propiconazole was determined using 52 wild-type single-spore isolates. The 50% effective concentrations of these 52 isolates to propiconazole ranged from 0.145 to 1.446  μ g/ml. Among the 52 isolates, two (07–82 and 04–006) were hypersensitive to propiconazole. The propiconazole-hypersensitive (PHS) isolates were also hypersensitive to another DMI fungicide triadimefon, but not to a benzimidazole fungicide carbendazim. Compared with the propiconazole-sensitive (PS) isolates, the PHS isolates retained normal pathogenicity. Real-time PCR analysis showed that expression of cyp51 gene in the PHS isolates was not significantly different from that in the PS isolates. Analysis of DNA sequence of cyp51 gene showed that the PHS isolates 07–82 and 04–006 had an amino acid substitution at the codon position 234 and 450, respectively, where the amino acids were conserved in the CYP51 of other fungi, which indicated that the substitutions in CYP51 might be related to hypersensitivity of M. grisea to DMI fungicides.  相似文献   

20.
Zhang M  Chen WQ  Liu D  Liu TG  Gao L  Shu K 《Genetika》2012,48(6):776-780
Common bunt is one of the most important destructive diseases of wheat worldwide and is a domestic quarantined disease in China. However, a rapid and efficient method to identify the corresponding pathogens is currently limited. The objective of the present study was to develop a diagnostic molecular marker specific towards Tilletia foetida (Wall) Liro, a causal agent of the bunt disease. One specific DNA fragment for T. foetida (286 bp in length) was amplified using an Amplified Fragment Length Polymorphism (AFLP) assay and, this fragment was cloned and sequenced. One pair of specific primers (SC(286-1)/SC(286-2)), which was designed according to the sequence, could specifically amplify the corresponding fragment in all of the T. foetida isolates employed from both the People's Republic of China and United States, whereas this fragment could not be amplified by the other fungal species tested. Therefore, a specific Sequence Characterized Amplified Region (SCAR) marker was developed. This SCAR marker could distinguish T. foetida from related pathogenic fungi efficiently and could be used for the early diagnosis of the common bunt of wheat in the field, and provide an efficient way for disease surveillance and disease forecasting in cereal crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号