首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about gastrodermal neurons and synapses in the tentacles of sea anemones. Using transmission electron microscopy of serial thin sections of Calliactis parasitica, we have identified both a sensory cell and a ganglion cell with granular vesicles originating from the Golgi complex and have identified four types of synapses in the tentacular gastrodermal nerve plexus. The sensory cell has a recessed apical cilium with a basal body and a perpendicularly oriented centriole, below which are several strands of striated rootlets surrounded by mitochondria. The ganglion cell lacks a cilium and resembles a bipolar neuron, with oppositely directed processes lying parallel to the basally located circular smooth muscle. Both one-way and two-way interneuronal synapses are present with 60- to 90-nm granular vesicles of various densities aligned at the paired electron-dense membranes and fine cross filaments in the intervening 13-nm cleft. Two types of neuroeffector synapses have been located. Dense granular vesicles are present at neuromuscular synapses, whereas less dense vesicles are present at neuroglandular synapses. Most of the synaptic vesicles range from 60 to 120 nm in diameter. Two types of nerve cells and a variety of synaptic loci provide morphological substrates for the spontaneous SS2 conduction pulses in the tentacular gastrodermis of C. parasitica. J Morphol 231:217–223, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Summary The crustacean species Pacifastacus leniusculus and Gammarus pulex were investigated by electron microscopy in a search for possible neuromuscular junctions in the hindgut, which has a rich supply of catecholaminergic fibres. True neuromuscular synapses were found in both species between nerve terminals containing dense-core vesicles (80–110 nm in diam.) and muscle fibres. We suggest that the dense-core vesicle terminals contain a catecholamine, and this is supported by ultrahistochemical tests for monoamines. Two types of junctions are found: one in which the nerve terminal is embedded in the muscle cell (both species) and one in which protrusions from the muscle cell meet nerve terminals (Pacifastacus). Gammarus pulex, which has only circular muscles in the hindgut, has only catecholaminergic innervation, whereas Pacifastacus leniusculus has circular and longitudinal muscles both with at least two types of innervation.The investigation was supported by grants from the Swedish Natural Science Research Council (B 2760-009), the Hungarian Academy of Sciences, the Royal Swedish Academy of Sciences, and the Magnus Bergvall Foundation. We are also indebted to Mrs. Lena Sandell for her skilful technical assistance  相似文献   

3.
Summary In juxtaposition with the contractile epithelia of the axial complex of the sea urchin, Sphaerechinus granularis, several types of nerve fibers with different vesicle populations were determined. Nerve terminals, filled with clear vesicles and dense core vesicles, form synaptoid neuromuscular junctions. Close to the somatocoelic epithelia of the axial and terminal sinus septa, numerous axon profiles form a nerve plexus. Among the epithelial cells covering the plexus, two types of nerve cells can be distinguished which presumably produce neurosecretory and aminergic granules, respectively. Monoamine fluorescence (formaldehyde-induced fluorescence, Falck-Hillarp technique) was analyzed microspectrofluorimetrically. The emission spectrum of the fluorophores occurring in the present material shows a maximum at 475 nm and is characteristic of catecholamines; the excitation maximum at 380 nm after formaldehyde treatment is typical of catecholamines at low pH only. Since the peak ratio (370:320 nm) does not change after HCl-vapor treatment, the fluorophores are likely to be indicative of dopamine.  相似文献   

4.
The nervous system of the planula larva of Anthopleura elegantissima consists of an apical organ, one type of endodermal receptor cell, two types of ectodermal receptor cells, central neurons and nerve plexus. Both interneural and neuromuscular synapses are found in the nerve plexus. The apical organ is a collection of about 100 long, columnar cells each bearing a long cilium and a collar of about 10 microvilli. The cilia of the apical organ are twisted together to form an apical tuft. The ciliary rootlets of the apical organ cells are extremely long, reaching to the basal processes of the cells adjacent to the mesoglea. All three types of sensory cells are tall and slender in profile and are identified by the presence of one or more of the following features: microtubules, small vesicles, membrane-bound granules and synapses. The interneurons are bipolar cells with somas restricted to the aboral end, adjacent to the apical organ. All synapses observed are polarized or asymmetrical. A diagram including all the elements of the nervous system is presented and the possible functions of the nervous system are discussed in relation to larval behavior.  相似文献   

5.
Summary Synaptic components from the peripheral nervous system of the polyclad flatworm, Notoplana acticola, are described from electron microscopic observations. Quasineuropile, defined as clusters of neurites containing synaptic vesicles, occurs as scattered islands along the peripheral nerve cords of the plexus. Some neurite clusters only contain one type of synaptic vesicle but others are mixed. The most usual synaptic configuration consists of a single presynaptic element and a pair of postsynaptic neurites sharing a common synaptic cleft. These synapses are polarized and contain clear, 420 Å vesicles. GABA-type synapses are also found. At least two kinds of solid-core vesicles also occur.  相似文献   

6.
In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KDHOM) with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KDHOM mice presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1–43 staining intensity, total number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical stimulation or no stimulation, VAChT KDHOM neuromuscular junctions did not differ from WT on total number of vesicles but showed altered distribution. Additionally, motor nerve terminals in VAChT KDHOM exhibited small and flattened synaptic vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results, we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content affects vesicles shape.  相似文献   

7.
The cardiac ganglion in the lobster Homarus americanus was examined with a transmission electron microscope. Nerve terminals often existed in large aggregations surrounded by glial and connective tissue elements. Axo-axonic and axo-dendritic synapses were present. Six ultrastructurally different types of nerve terminal, each containing an abundance of vesicles, were distinguished: three formed discrete chemical synapses as indicated by typical release site morphology; three did not. The latter appear to be neurosecretory axon terminals of extrinsic neurons. More than one morphologically distinct type of synaptic vesicle occurred commonly in a given terminal, suggesting the presence of coexisting neurotransmitters and/or neuroregulatory factors. Symmetrical chemical synapses and electrotonic junctions between axons were present.  相似文献   

8.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

9.
The peripheral nervous system and the synapses of G. hermaphroditus are studied with the electron microscope. There is a submuscular as well as a subepithelial plexus. The subepithelial plexus is found among the muscles and between the muscles and the basement membrane. It consists of fibres containing large lucent and lysosome-like vesicles and fibres with only small lucent (synaptic) vesicles. In the deeper lying submuscular plexus also dense and dense-cored vesicles occur in the fibres. Cell bodies are not observed in the plexuses. The separate nerve supplies of the pharynx and the gonads contain nerve cells of the neurosecretory type. Fibres of the same kinds as in the brain are also seen here. The synapses in the neuropile are of two kinds. 1. Symmetrical synapses with an additional presynaptic network are most common. 2. Synapses without thickenings of membranes are observed between lateral membranes of neurites. In the peripheral nervous system are two other kinds of synapses also observed. 1. Asymmertical synapses with a denser and wider postsynaptic thickening and 2. neuromuscular junctions. Neurites containing accumulations of small vesicles against the basement membrane are also described. The organization of the peripheral nervous system is described and discussed in relation to the systematic position of G. hermaphroditus.  相似文献   

10.
Many, but not all, visceral muscles in insects are innervatedby neurosecretory axons. The neurosecretory junctions with theheart muscle of the American cockroach, Periplaneta americana,show ultrastructural and electrophysiological evidence of chemicallytransmitting synapses, and cytochemical evidence for the presenceof monoamines. Electron microscopy of nerve terminals showsthat synaptic vesicles may be formed directly from electron-dense"neurosecretory" granules Neurotomy of motor axons to skeletal muscles in insects leadsto aggregation and clumping of synaptic vesicles after 48 hours.Treatment of in vitro nerve-muscle preparations with variousrespiratory poisons caused aggregation similar to that developedin neurotomized animals. This suggested that vesicle aggregationin both cases may have resulted from a decrease in availableadenosine triphosphate in the nerve terminal with subsequentalteration in the normal charge density which supports a repulsiveforce between the vesicles.  相似文献   

11.
In cultured hippocampal neurons, synaptogenesis is largely independent of synaptic transmission, while several accounts in the literature indicate that synaptogenesis at cholinergic neuromuscular junctions in mammals appears to partially depend on synaptic activity. To systematically examine the role of synaptic activity in synaptogenesis at the neuromuscular junction, we investigated neuromuscular synaptogenesis and neurotransmitter release of mice lacking all synaptic vesicle priming proteins of the Munc13 family. Munc13-deficient mice are completely paralyzed at birth and die immediately, but form specialized neuromuscular endplates that display typical synaptic features. However, the distribution, number, size, and shape of these synapses, as well as the number of motor neurons they originate from and the maturation state of muscle cells, are profoundly altered. Surprisingly, Munc13-deficient synapses exhibit significantly increased spontaneous quantal acetylcholine release, although fewer fusion-competent synaptic vesicles are present and nerve stimulation-evoked secretion is hardly elicitable and strongly reduced in magnitude. We conclude that the residual transmitter release in Munc13-deficient mice is not sufficient to sustain normal synaptogenesis at the neuromuscular junction, essentially causing morphological aberrations that are also seen upon total blockade of neuromuscular transmission in other genetic models. Our data confirm the importance of Munc13 proteins in synaptic vesicle priming at the neuromuscular junction but indicate also that priming at this synapse may differ from priming at glutamatergic and gamma-aminobutyric acid-ergic synapses and is partly Munc13 independent. Thus, non-Munc13 priming proteins exist at this synapse or vesicle priming occurs in part spontaneously: i.e., without dedicated priming proteins in the release machinery.  相似文献   

12.
Relationships of neuromuscular junctions of the somatic musculature and associated neural-neural synapses in the ventral nerve trunk of the canine adult heartworm, Dirofilaria immitis, were studied by transmission electron microscopy. The heartworms were maintained in vitro prior to study. Nerve fibres in the trunk were highly invaginated into the cytoplasm of hypodermal cells and connected through the intercellular spaces via mesaxons. The nerve fibres contained neurotubules, neurofilaments and ribosomes. The nerve trunk and the muscle arms were separated by an epineurium averaging 250 nm in width. At the junctional site, a marked reduction in width of the epineurium was noted at the synaptic cleft. Often when two adjacent nerve fibres had adjacent neuromuscular junctions, an axo-axonal synapse and common mesaxon between the adjacent fibres were present. Varicosities were evident on some cross-sections through nerve fibres and ranged from a simple outward swelling against the muscle arm mass to exaggerated outgrowths measuring several micrometers in length.  相似文献   

13.
Presynaptic nerve terminals contain a great number ofsynaptic vesicles filled with neurotransmitter. The transmission of information in synapses is mediated by release of transmitter from vesicles: exocytosis, after their fusion with presynaptic membrane. At the functioning synapses, the continuous recycling of synaptic vesicles occurs (vesicle cycle), which provides multiple reuse of vesicular membrane material during synaptic activity. Vesicle cycle consists of large number of steps, including vesicle fusion--exocytosis, formation of new vesicles--endocytosis, vesicle sorting, filling of vesicles with transmitter, intraterminal vesicle transport driving the vesicles to different vesicle pools and preparing to next exocytic event. At this paper, I presented the latest literature and our data regarding the steps and mechanisms of vesicle cycle at synapses. Special attention was paid to neuromuscular synapse as the most thoroughly investigated and as my favorite preparation.  相似文献   

14.
We have examined the cytoskeletal architecture and its relationship with synaptic vesicles in synapses by quick-freeze deep-etch electron microscopy (QF.DE). The main cytoskeletal elements in the presynaptic terminals (neuromuscular junction, electric organ, and cerebellar cortex) were actin filaments and microtubules. The actin filaments formed a network and frequently were associated closely with the presynaptic plasma membranes and active zones. Short, linking strands approximately 30 nm long were found between actin and synaptic vesicles, between microtubules and synaptic vesicles. Fine strands (30-60 nm) were also found between synaptic vesicles. Frequently spherical structures existed in the middle of the strands between synaptic vesicles. Another kind of strand (approximately 100 nm long, thinner than the actin filaments) between synaptic vesicles and plasma membranes was also observed. We have examined the molecular structure of synapsin 1 and its relationship with actin filaments, microtubules, and synaptic vesicles in vitro using the low angle rotary shadowing technique and QF.DE. The synapsin 1, approximately 47 nm long, was composed of a head (approximately 14 nm diam) and a tail (approximately 33 nm long), having a tadpole-like appearance. The high resolution provided by QF.DE revealed that a single synapsin 1 cross-linked actin filaments and linked actin filaments with synaptic vesicles, forming approximately 30-nm short strands. The head was on the actin and the tail was attached to the synaptic vesicle or actin filament. Microtubules were also cross-linked by a single synapsin 1, which also connected a microtubule to synaptic vesicles, forming approximately 30 nm strands. The spherical head was on the microtubules and the tail was attached to the synaptic vesicles or to microtubules. Synaptic vesicles incubated with synapsin 1 were linked with each other via fine short fibrils and frequently we identified spherical structures from which two or three fibril radiated and cross-linked synaptic vesicles. We have examined the localization of synapsin 1 using ultracryomicrotomy and colloidal gold-immunocytochemistry of anti-synapsin 1 IgG. Synapsin 1 was exclusively localized in the regions occupied by synaptic vesicles. Statistical analyses indicated that synapsin 1 is located mostly at least approximately 30 nm away from the presynaptic membrane. These data derived via three different approaches suggest that synapsin 1 could be a main element of short linkages between actin filaments and synaptic vesicles, and between microtubules and synaptic vesicles, and between synaptic vesicles in the nerve terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In sensory systems, insight into synaptic arrangements on cells of known physiological response properties has helped our understanding of the structural basis for these properties. To carry out these types of studies, however, synaptic types in the region of interest must be defined. Unfortunately, defining synaptic types in the brainstem has proved to be a challenging enterprise. Our study was done to classify synapses in the gustatory part of the nucleus solitarius using objective quantitative criteria and a cluster analysis procedure. Cluster analysis allows classification of a population of objects, such as synaptic terminals, into groups that exhibit similar characteristics. Six terminal types were identified using cluster analysis and subsequent analyses of variance and post hoc tests. Unlike classification schemes used for the cerebral cortex, where synaptic apposition density thickness and shape of vesicles is useful (Gray's Type I and II synapses), the concentration of vesicles in a terminal was a more useful measurement with which to classify terminals in the nucleus solitarius. To validate that vesicle density (vesicles/μm2) is a useful defining characteristic to classify terminals in the nucleus solitarius, terminals of a known type were used. GABAergic terminals were identified using postembedding immunohistochemical techniques, and their vesicle density was determined. GABAergic terminals fall into the range of two of the terminal types defined by the cluster analysis and, based on vesicle density, two types of GABAergic terminals were identified. We conclude that vesicle density is a helpful means to identify synapses in this brainstem nucleus.  相似文献   

16.
Molecular mechanisms linking pre- and postsynaptic membranes at the interneuronal synapses are little known. We tested the cadherin adhesion system for its localization in synapses of mouse and chick brains. We found that two classes of cadherin-associated proteins, alpha N- and beta-catenin, are broadly distributed in adult brains, colocalizing with a synaptic marker, synaptophysin. At the ultrastructural level, these proteins were localized in synaptic junctions of various types, forming a symmetrical adhesion structure. These structures sharply bordered the transmitter release sites associated with synaptic vesicles, although their segregation was less clear in certain types of synapses. N-cadherin was also localized at a similar site of synaptic junctions but in restricted brain nuclei. In developing synapses, the catenin-bearing contacts dominated their junctional structures. These findings demonstrate that interneuronal synaptic junctions comprise two subdomains, transmitter release zone and catenin-based adherens junction. The catenins localized in these junctions are likely associated with certain cadherin molecules including N-cadherin, and the cadherin/ catenin complex may play a critical role in the formation or maintenance of synaptic junctions.  相似文献   

17.
Summary The ultrastructure of synapses between the cord giant fibres (lateral and medial) and the motor giant fibres in crayfish, Astacus pallipes, third abdominal ganglia have been examined. These electrotonic synapses are asymmetrical, they have synaptic vesicles only in the presynaptic fibre, and they have synaptic cleft widths normally of about 100 Å but narrowed to about 50 Å in restricted areas. Localized increases in density of the synaptic cleft and adjacent membranes also occur within a synapse, and synaptic vesicles are most tightly grouped at the membrane in such areas. Tight or gap junctions with 30 Å or narrower widths have not been found, but the junctions probably function in a similar way to gap junctions.Three small nerves are closely associated with the synapses between the giant fibres. One of these small nerves has round synaptic vesicles and is thought to be excitatory on morphological grounds; one has flattened vesicles and is thought to be inhibitory; and one is postsynaptic to the lateral giant and the two small presynaptic nerves. It is proposed that these small nerves modulate activity in the much larger giant fibre synapse.  相似文献   

18.
The docking of synaptic vesicles on the presynaptic membrane and their priming for fusion with it to mediate synaptic transmission of nerve impulses typically occur at structurally specialized regions on the membrane called active zones. Stable components of active zones include aggregates of macromolecules, ‘active zone material’ (AZM), attached to the presynaptic membrane, and aggregates of Ca2+-channels in the membrane, through which Ca2+ enters the cytosol to trigger impulse-evoked vesicle fusion with the presynaptic membrane by interacting with Ca2+-sensors on the vesicles. This laboratory has used electron tomography to study, at macromolecular spatial resolution, the structure and function of AZM at the simply arranged active zones of axon terminals at frog neuromuscular junctions. The results support the conclusion that AZM directs the docking and priming of synaptic vesicles and essential positioning of Ca2+-channels relative to the vesicles'' Ca2+-sensors. Here we review the findings and comment on their applicability to understanding mechanisms of docking, priming and Ca2+-triggering at other synapses, where the arrangement of active zone components differs.  相似文献   

19.
The ultrastructure of neuromuscular junctions in the twitch fibers of the stapedius muscle of Gallus gallus (domesticus) was investigated as part of a series of neurophysiological studies. Among the morphological features observed were elongated end-plates with numerous large and clear synaptic vesicles mixed with larger dense core vesicles and irregular or aperiodic “active sites” in the presynaptic membrane where synaptic vesicles were focused. The most remarkable features of these junctions were large synaptic clefts (50-80 nm) and the absence of junctional folds in the sarcolemmal surface. Unlike the large periodic junctional folds seen in the neuromuscular junctions of frogs and in the fast twitch fibers of the mammalian stapedius, the preparations studied only show small aperiodic invaginations (primitive folds) in the postsynaptic membranes. This morphological feature remains essentially constant from newly hatched to adult chickens. While these smooth junctions are consistent with earlier findings of inconspicuous junctional folds in the twitch fibers of the chicken posterior latissimus dorsi they are unlike those seen in the fast twitch fibers of the mammalian stapedius muscle, or other twitch fibers in general. The morphological findings of the present study may also suggest that the simple, unmodified neuromuscular junctions in the stapedius of Gallus may be a useful preparation for studies of synaptic membrane structures that employ the freeze-fracture technique.  相似文献   

20.
The ultrastructures of the retractor muscles of Gené's organs in the cattle ticksBoophilus microplus andAmblyomma variegatum are described. The innervation, neuromuscular junctions, and insertions of the muscles are also described. The retractor muscles are important in controlling the actions of Gené's organ, the egg waxing organ in ticks, during oviposition in the female. The ultrastructural features of the muscles are typical of arthropod muscles, and the nerve terminals at the neuromuscular junctions contain small electron lucent synaptic vesicles with a diameter of 50 nm, and also larger dense core vesicles with a diameter of 100 nm. Evidence is presented implicatingl-glutamate andl-aspartate as putative excitatory transmitters at the tick neuromuscular junction. The excitatory post-synaptic potentials recorded in the muscles were abolished in the presence of low concentrations ofl-glutamic acid andl-aspartic acid, but were unaffected by acetyl-choline, 4-aminobutyric acid and octopamine, suggesting that glutamic acid and aspartic acid interact with receptors on the muscle membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号