首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific antibodies of the gamma 1--78 peptide of human fibrinogen were employed in binding assays and in equilibrium competitive inhibition assays to analyze the expression of gamma 1--78 antigenic determinants as an indication of the relative exposure of the gamma 1--78 sequence in the E domain of fibrinogen, high solubility fibrinogen subfractions I-8 and I-9, and plasmic cleavage fragments of fibrinogen and fibrin. A very limited exposure of gamma 1--78 sequences was found to occur concomitant with proteolytic deletions of the major carboxyterminal segment of the A alpha chains in fgI-8, fgI-9. Exposure of gamma 1--78 is not influenced by further proteolysis to fg-X which is associated with B beta 1--43 deletion. Further proteolysis to fg-Y, which is associated with deletion of beta 43--53 and of one of the D domains, is associated with additional exposure of gamma 1--78. This is not significantly influenced by further proteolysis to fg-E with deletion of the second D domain, deletion of A alpha 1--19, and proteolysis at the carboxyterminal aspects of the E domain chains.  相似文献   

2.
The conformations of the gamma chain COOH terminus of intact fibrinogen and various fragments containing this region have been compared by an immunochemical analysis. Location of a major epitope in the sequence gamma 391-405 was successfully predicted from a hydrophobicity profile. An antibody population specific for the native epitope within the gamma 391-405 segment was isolated by immunoadsorption. Between 19.2 and 22.8% of antibodies were obtained from three different antisera, indicating that this region represents one of the major epitopes of native fibrinogen. Anti-gamma 391-405(N) antibodies were used to determine the value of Kconf, the equilibrium constant for the interconversion of the non-native and native conformations of this epitope. The measurements were done using native fibrinogen, fragments D1 and DD, gamma chain, and gamma 391-405. In addition, the effect of 5 M guanidine HCl on the conformation of fragments D1 and DD, which is known to abolish their antipolymerizing activity, was studied. Radioiodinated fibrinogen was used in the determination of Kconf, CI50%, and CIs (quantitative analytical parameters calculated from competitive inhibition radioimmunoassays) by measuring the competition between 125I-fibrinogen and the fibrinogen derivatives under study for binding to the immunochemically purified antibody. The measurements indicated that the epitope is unperturbed by iodination of fibrinogen and that 38.5% of fragment D1, 8.9% of fragment DD, 3.6% of the gamma chain, and less than 0.008% of the gamma 391-405 molecules adopt in aqueous solution the native conformation within the epitope. Denaturation of fragment D1 with 5 M guanidine HCl affected only slightly the conformation of this gamma chain determinant. More significant changes in the conformation were observed when fragment DD was denatured. The results suggest that long-range interactions are necessary for the stabilization of the native structure in the region of fibrinogen that interacts with the antibody and which is in close vicinity to the polymerization site, cross-linking site, and platelet recognition site.  相似文献   

3.
Fragments D1 and DD, plasmic degradation products of human fibrinogen and cross-linked fibrin, respectively, originate from the COOH-terminal domain of the parent molecule. Since a specific binding site for fibrin resides in the COOH-terminal region of the gamma chain, the primary structure of the two fragments was compared and their affinity for fibrin monomer measured. Fragments D1 and DD contained the same segments of the three fibrinogen chains, corresponding to the sequences alpha 105-206, beta 134-461, and gamma 63-411. Fragment DD had a double set of the same chain remnants. Fragments D1 and DD inhibited polymerization of fibrin monomer in a dose-dependent manner; 50% inhibition occurred at a molar ratio of fragment to monomer of 1:1 and 0.5:1, respectively. To prevent fibrin monomer polymerization and render it suitable for binding studies in the liquid phase, fibrinogen was decorated with Fab fragments isolated from rabbit antibodies to human fragment D1. Fibrinogen molecules decorated with 6 molecules of this Fab fragment did not clot after incubation with thrombin, and the decorated fibrin monomer could be used to measure binding of fragments D1 and DD in a homogeneous liquid phase. The data analyzed according to the Scatchard equation and a double-reciprocal plot gave a dissociation constant of 12 nM for fragment D1 and 38 nM for fragment DD. There were two binding sites/fibrin monomer molecule for each fragment. After denaturation in 5 M guanidine HCl, the inhibitory function on fibrin polymerization was irreversibly destroyed. Denatured fragments also lost binding affinity for immobilized fibrin monomer. The preservation of the native tertiary structure in both fragments was essential for the expression of polymerization sites in the structural D domain.  相似文献   

4.
The conformation of the carboxy-terminal aspects of the A alpha chain of human fibrinogen has been assessed by immunochemically characterizing the A alpha 239-476 and A alpha 518-584 regions of the molecule. Two peptides, corresponding to these regions, were isolated from cyanogen bromide digests of the A alpha chain by molecular exclusion and high-performance liquid chromatography. Each peptide reacted with antibodies elicited by immunization with the A alpha chain and intact fibrinogen. A alpha 239-476 appears to be a relatively immunodominant region of the molecule. Competitive inhibition analyses confirmed the accessibility of these regions to antibody in native fibrinogen. Each peptide, however, contained one or more epitopes, which was occult in the native molecule. These occult epitopes were expressed by the intact A alpha chain and became accessible when fibrinogen was cleaved with plasmin. With plasmic degradation the epitopes expressed by fibrinogen and contained within these two peptide regions became significantly more reactive with antibody. This change occurred in concert with release of the A alpha 518-584 region from the core of the molecule but did not require the generation of free A alpha 239-476. Ultimately the epitopes within both regions were shed from the plasmin-resistant core of fibrinogen. Peptide epitopes were expressed in a similar manner by prolonged plasmic degradation of fibrinogen and fibrin with alpha chain cross-linking. These results are generally consistent with models depicting the carboxy-terminal aspects of the A alpha chain as being surface-oriented but suggest a systematic ordering of structure when these regions are integrated into the native molecule. Plasmic cleavage significantly relaxes the conformational restraints on the organization within this region.  相似文献   

5.
Cellular immune responses can elicit local deposition of fibrin at the site of immunologic reactions, as well as the formation of intravascular fibrin in disseminated reactions. The subsequent physiologic proteolysis of fibrinogen and fibrin by plasmin results in small peptides that suppress lymphocyte functions in vitro and in the immune response in vivo. The intramolecular origin of lymphocyte suppressive activity and the proteolytic events responsible for the release of active peptides have been analyzed. Plasmic peptides from the isolated B beta and gamma constituent chains of fibrinogen did not inhibit mitogen-driven responses of human peripheral blood mononuclear cells. In contrast, plasmic digests of the A alpha chain, but not the intact A alpha chain were suppressive. Advanced plasmic digests of fibrinogen and the A alpha chain were suppressive at similar concentrations, suggesting that biological activity is derived predominantly from the A alpha chain. Limited plasmic digests of fibrinogen were fractionated to yield a heat-precipitable 250,000 dalton fragment X and heat-soluble proteolytic products containing fragments derived from the carboxyl-terminal region of the A alpha chain including a 42,000 dalton major A alpha chain derivative. Neither fragment X nor derivatives produced by its additional plasmic proteolysis were suppressive. In contrast, the heat-soluble fraction from limited plasmic cleavage was suppressive, and this activity was enhanced 10-fold by additional plasmic cleavage of this fraction. The isolated 42,000 dalton A alpha chain fragment was devoid of activity, but plasmic digestion of this derivative generated peptides of less than 8000 daltons that inhibited mitogen-stimulated thymidine uptake by lymphocytes. Two synthetic peptides corresponding to A alpha 220-230 and B beta 43-47, peptides with known vasoactive activities, suppressed lymphocyte thymidine uptake at very high concentrations. Based on their maximal yield from plasmic digests of fibrinogen, these two peptides would account for only 1% of the immunosuppressive activity of fibrinogen derivatives. In summary, the results indicate that the suppressive activity of fibrinogen is predominantly derived from the 42,000 dalton carboxyl terminal region of the A alpha chain of the molecule and is not attributable to the known vasoactive peptides. Initial proteolytic release of this region from the core of fibrinogen does not result in suppressive activity, but additional cleavage releases small peptides with the lymphocyte inhibitory function.  相似文献   

6.
Conformational and structural modulations of the NH2-terminal region of fibrinogen and fibrin associated with plasmin cleavage have been examined utilizing specific antibody probes. The E region derived from the NH2-terminal aspects of fibrinogen undergoes complex structural and conformational changes throughout the cleavage process as indicated by differences in the quantitative and qualitative expression of antigenic determinants by the E region of each isolated cleavage fragment. When the range of antigenic determinants recognized by the antibody probe is limited to a specific molecular marker on the gamma chain within the E region, fg-E-neo, evidence for a systematic and progressive modulation of this site during plasmin cleavage is observed. Fg-E-neo undergoes progressive exposure as the cleavage of fibrinogen proceeds from X to Y to D:E complex. Separation of the D:E complex into its constituent, D and E fragments, is associated with further exposure of fg-E-neo determinants. The sequential cleavage of fibrin by plasmin also leads to progressive exposure of the fg-E-neo site; however, comparison of corresponding fragments derived from fibrinogen and fibrin reveals significant differences in the character of fg-E-neo expression. Immunochemical differences between fibrin and fibrinogen E fragments are not abolished by further exposure of the fragments to plasmin, are apparently not due to the presence or absence of fibrinopeptides, and are maintained following denaturation and renaturation of the fragments. These results suggest that the differential expression of fg-E-neo by the E fragments may be primarily dependent upon differences in amino acid compositions of the fragments.  相似文献   

7.
Platelet membrane GPIIbIIIa is a member of the family receptors named integrins that recognize RGD sequences in their ligands. GPIIbIIIa interacts with at least three different adhesive ligands: fibrinogen, fibronectin, and von Willebrand factor. These interactions are inhibited by RGD-containing peptides and by peptides corresponding to a sequence unique to fibrinogen in the COOH-terminal domain of its gamma chain (HLGGAKQAGDV). Two RGD sequences are present in fibrinogen A alpha chain: an RGDS sequence at A alpha 572-575, and an RGDF sequence at A alpha 95-98. Polyclonal antibodies raised against the RGDF sequence and the gamma COOH-terminal domain both reacted specifically with fibrinogen in solid phase enzyme-linked immunosorbent assays and immunoprecipitated the protein in solution. The Fab fragments prepared from these antibodies inhibited fibrinogen-platelet interaction and aggregation. These results demonstrate that these two sequences are both accessible within the fibrinogen molecule and are both implicated in ligand binding and cell-cell interaction. In addition, by further examining the interaction of the gamma chain peptide with platelets, it was found that RGDF and the gamma peptide produced a similar dose-dependent inhibition of the binding of the labeled gamma peptide to ADP-stimulated platelets. These results provide evidence that the RGDF sequence present at the A alpha 95-98 constitutes with the gamma 401-411 sequence two recognition sites interacting with the same site or with mutually exclusive sites on GPIIbIIIa.  相似文献   

8.
Calcium limits the plasmic proteolysis of fibrinogen fragment D by binding to a specific site on the carboxy-terminal segment of the D gamma chain. Employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis to visualize plasmic fragments, Sr2+, Ba2+, and Mn2+ were found to have an equivalent capacity to limit the degradation of fibrinogen fragment D (Mr 94,000). Mg2+, Fe2+, Co2+, and Zn2+ did not comparably limit the digestion of fragment D. Equilibrium dialysis demonstrated that Ba2+ competitively inhibited Ca2+ binding to fibrinogen, suggesting that the ions occupied the Ca2+ binding site of fibrinogen and thereby limited the plasmic digestion of fragment D. The results suggest that Ca2+, Sr2+, Ba2+, and Mn2+ limit plasmin digestion of fragment D by interacting with a Ca2+ binding site in the D domain of the fibrinogen molecule.  相似文献   

9.
In order to assess the significance of the aminoterminal residues of the B beta chain in expression of polymerization sites of the E domain, we have prepared polyclonal antiserum against a synthetic peptide corresponding to beta 43-47 of human fibrinogen. Affinity purified immunoglobulin IgG and Fab prepared from these antibodies reacted strongly and specifically with the synthetic pentapeptide and intact fibrinogen molecule. This specificity was determined both by radioimmunoassay and Western blot analysis of fibrinogen and its plasmic fragments and described in our previous paper (Cierniewski et al., 1986, Biochim. Biophys. Acta, 884, 594-597). Immunochemically purified anti beta 43-47 antibodies and their Fab fragments were strong inhibitors of the fibrin monomer polymerization. Our results imply that amino acid sequence beta 43-47 recognized by these antibodies may be in a close vicinity to the contact sites of the E domain.  相似文献   

10.
Three Fragment D species (D1, D2, D3) were isolated with time from a plasmin digest of fibrinogen and had molecular weights of 92,999, 86,000 and 82,000 by summation of subunit molecular weights from sodium dodecyl sulfate polyacrylamide gel electrophoresis. Their molecular weights by sedimentation equilibrium ultracentrifugation were 94,000 t87,000, 88,000 to 82, 000, and 76,000 to 70,000 depending on the values calculated for the partial specific volumes. Each of the Fragment D species contained three disulfide-linked subunits derived from the Aalpha, Bbeta, and gamma chains of fibrinogen and differed only in the extent of COOH-terminal degradation of their gamma chain derivatives. Plasmin cleaved Fragment D1 to release the cross-link sites from its gamma' subunit of 38,000 molecular weight; however, the beta' subunit of 42,000 molecular weight and the alpha' subunit of 12,000 molecular weight were resistant to further digestion by plasmin. Fragment D isolated from highly cross-linked fibrin had a dimeric structure due to cross-link formation between the gamma' subunits of two fibrinogen Fragment D species. The molecular weight of fibrin Fragment D was 184,000 by summation of subunit molecular weights and 190,000 to 175,000 by sedimentation equilibrium. Cross-linking the gamma chain, as well as incorporating the site-specific fluorescent label monodansyl cadaverine into the gamma chain cross-link acceptor site, prevented its COOH-terminal degradation by plasmin. Therefore, only one species of fibrin Fragment D, as well as only one species of monodansyl cadaverine-labeled fibrin Fragment D monomer, was generated during plasmin digestion. These results show unequivocally that each fibrinogen Fragment D contains only three subunit chains and therefore the digestion of fibrinogen by plasmin must result in the production of two Fragment D molecules from each fibrinogen molecule. The recently proposed model of fibrinogen cleavage that postulates the generation of a single Fragment D with three pairs of subunit chains from each fibrinogen molecule is incorrect. Incorporation of monodansyl cadaverine into the cross-link acceptor sites of the alpha chain did not alter its cleavage by plasmin detectably. A series of monodansyl cadaverine-labeled peptides, which ranged in molecular weight from 40,000 to 23,000, were cleaved from the alpha chain of monodansyl cadaverine-labeled fibrin monomer during the early stages of plasmin digestion. These peptides were degraded progressively to a brightly fluorescent plasmin-resistant peptide of 21,000 molecular weight and a weakly fluorescent peptide of 2,500 molecular weight. Thus both alpha chain cross-link acceptor sites are contained within a peptide segment of 23,000 molecular weight.  相似文献   

11.
Calcium is required for effective fibrin polymerization. The high affinity Ca2+ binding capacity of fibrinogen was directly localized to the gamma-chain by autoradiography of nitrocellulose membrane blots of fibrinogen subunits incubated with 45Ca2+. Terbium (Tb3+) competitively inhibited 45Ca2+ binding to fibrinogen during equilibrium dialysis, accelerated fibrin polymerization, and limited fibrinogen fragment D digestion by plasmin. The intrinsic fluorescence of Ca2+-depleted fibrinogen was maximally enhanced by Ca2+ and Tb3+, but not by Mg2+, at about 3 mol of cation/mol of fibrinogen. Protein-bound Tb3+ fluorescence at 545 nm was maximally enhanced by resonance energy transfer from tryptophan (excitation at 290 nm) at about 2 mol of Tb3+mol of fibrinogen and about 1 mol of Tb3+/mol of plasmic fragment D94 (Mr 94,000). Fibrinogen fragments D78 (Mr 78,000) and E did not show effective enhancement of Tb3+ fluorescence, suggesting that the Ca2+ site is located within gamma 303 to gamma 411, the peptide which is absent in fragment D78 but present in D94. When CNBr fragments of the carboxyamidated gamma-subunit were assayed for enhancement of Tb3+ fluorescence, peptide CBi (gamma 311-336) bound 1 mol of Tb3+/mol of CBi. Thus, the Ca2+ site is located within this peptide. The sequence between gamma 315 and gamma 329 is homologous to the calmodulin and parvalbumin Ca2+ binding sites.  相似文献   

12.
The C-terminal region of the fibrinogen gamma chain is known to participate in several functional interactions including fibrin polymerization. This part of the molecule is retained on the gamma chain of fragment D (FgD) when fibrinogen is digested by plasmin in the presence of calcium to produce the fragment D-fragment E (FgD X FgE) complex but is lost if FgD is prepared in the absence of calcium. In an attempt to characterize the C-terminal polymerization domain we have used three techniques to examine this further degradation of FgD following the addition of EDTA and plasmin. Analysis of the digestion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a progressive cleavage of the gamma chain to two small remnants. The polymerization-inhibitory activity of the whole digest was studied using acid-solubilized fibrin. A progressive loss of inhibitory activity was associated with gamma chain shortening, reaching greater than a 120-fold reduction at the end of digestion. The cleavage of peptides was followed by reverse-phase high performance liquid chromatography and the release of a characteristic peptide triplet was associated with gamma chain cleavage. Manual sequencing, amino acid analysis, and fast atom bombardment mass spectrometry established the three peptides as gamma 303-356, 357-373, and 374-405. These peptides have sequences in common with those peptides recently reported by other investigators to be potent polymerization inhibitors. However, when a mixture of the three peptides was added in a 200-fold molar excess to polymerizing fibrin, no inhibitory activity could be demonstrated. It is concluded that the C-terminal polymerization domain of fibrinogen may be an extended region which includes the sequence gamma 303-405, when this is contiguous with the remainder of the gamma chain.  相似文献   

13.
Binding of the adhesive ligand fibrinogen and the monoclonal antibody PAC1 to platelet glycoprotein (GP) IIb-IIIa is dependent on cell activation and inhibited by Arg-Gly-Asp (RGD)-containing peptides. Previously, we identified a sequence in a hypervariable region of PAC1 (mu-CDR3) that mimics the activity of the antibody. Here we examine whether monoclonal antibodies to this idiotypic determinant in PAC1 can mimic GP IIb-IIIa by binding to fibrinogen. Mice were immunized with a peptide derived from the mu-CDR3 of PAC1. Four antibodies were obtained that recognized fibrinogen as well as a recombinant form of the variable region of PAC1. However, they did not bind to other RGD-containing proteins, including von Willebrand factor, fibronectin, and vitronectin. Several studies suggested that these anti-PAC1 peptide antibodies were specific for GP IIb-IIIa recognition sites in fibrinogen. Three such sites have been proposed: two RGD-containing regions in the A alpha chain, and the COOH terminus of the gamma chain (gamma 400-411). Two of the antibodies inhibited fibrinogen binding to activated platelets, and all four antibodies bound to the fibrinogen A alpha chain on immunoblots. Antibody binding to immobilized fibrinogen was partially inhibited by monoclonal antibodies specific for the two A alpha chain RGD regions. However, the anti-PAC1 peptide antibodies also bound to plasmin-derived fibrinogen fragments X and D100, which contain gamma 400-411 but lack one or both A alpha RGD regions. This binding was inhibited by an antibody specific for gamma 400-411. When fragment D100 was converted to D80, which lacks gamma 400-411, antibody binding was reduced significantly (p less than 0.01). Electron microscopy of fibrinogen-antibody complexes confirmed that each antibody could bind to sites on the A alpha and gamma chains. These studies demonstrate that certain anti-PAC1 peptide antibodies mimic GP IIb-IIIa by binding to platelet recognition sites in fibrinogen. Furthermore, they suggest that the gamma 400-411 region of fibrinogen may exist in a conformation similar to that of an A alpha RGD region of the molecule.  相似文献   

14.
Congenitally abnormal fibrinogen Kyoto I with impaired fibrin monomer polymerization contains a normal gamma-chain and a gamma-chain variant (gamma Kyoto I) that has an apparently lower Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the Laemmli system (Laemmli, U. K. (1970) Nature 227, 680-685) but migrates with apparently normal Mr in the Weber and Osborn system (Weber, K., and Osborn, M. (1969) J. Biol. Chem. 244, 4406-4412). Reverse-phase high performance liquid chromatographic analyses of the cyanogen bromide or lysyl endopeptidase cleavage fragments of the purified gamma-chains of fibrinogen Kyoto I showed the presence of peptides not seen from normal fibrinogen. Amino acid sequence analysis of these peptides indicated that gamma Asn308 of the gamma-chain variant is replaced by lysine. Purified fragment D1 of fibrinogen Kyoto I also contains two types of D1 gamma-remnants: normal and apparently lower Mr types. Abnormal fragment D1 is cleaved faster to fragments D2 and D3 by plasmin in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) than normal fragment D1, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by immunoblotting using anti-gamma-chain monoclonal antibody. Analysis of peptides released from fragment D1 by plasmin in the presence of EGTA demonstrated the cleavage of the gamma Lys308-Gly309 bond. Fragment D1 of fibrinogen Kyoto I has normal calcium binding properties. The data suggest that a region or conformation containing gamma Asn308 affects the polymerization of fibrin monomers and that the gamma Asn308----Lys replacement causes a conformational change in the gamma-chain which results in the accelerated cleavage of gamma Lys356-Ala357 and gamma Lys302-Phe303 bonds by plasmin and also results in the generation of a new plasmin cleavage site between Lys308 and Gly309 in the presence of EGTA. During these studies, we found that part of the gamma Lys212-Glu213 bond in fragment D1 is cleaved by plasmin in the presence of EGTA.  相似文献   

15.
Mac-1 (CD11b/CD18), a leukocyte-restricted integrin receptor, mediates neutrophil/monocyte adhesion to vascular endothelium and phagocytosis of complement-opsonized particles. Recent studies have shown that Mac-1 also functions as a receptor for fibrinogen in a reaction linked to fibrin deposition on the monocyte surface. In this study, we have used extended proteolytic digestion of fibrinogen to identify the region of this molecule that interacts with Mac-1. We found that an Mr approximately 30,000 plasmic fragment D of fibrinogen (D30) produced dose-dependent inhibition (IC50 = 1.6 microM) of the interaction of intact 125I-fibrinogen with stimulated neutrophils and monocytes. 125I-D30 bound saturably to these cells with specific association of 136,200 +/- 15,000 molecules/cell in a reaction inhibited by OKM1 and M1/70, monoclonal antibodies specific for the alpha subunit of Mac-1. Direct microsequence analysis and an epitope-mapped monoclonal antibody showed that D30 lacks the COOH-terminal dodecapeptide of the gamma chain as well as the Arg-Gly-Asp sequences in the A alpha chain. We conclude that fibrinogen interacts with the leukocyte integrin Mac-1 through a novel recognition site that is not shared with other known integrins that function as fibrinogen receptors.  相似文献   

16.
The E fragment, derived from the NH2-terminal aspect of fibrinogen by plasmin cleavage (fg-E), possesses two generically distinct sets of antigenic expressions. The major set of antigens is expressed by the parent molecule as indicated by the capacity of a major subpopulation of antibodies present in antiserum to fg-E and reactive with fg-E to: (a) react with fibrinogen, and (b) be specifically absorbed by fibrinogen but appears following proteolysis with plasmin. These cleavage associated neoantigens (fg-E-neo) specifically react with a minor subpopulation of antibodies present in antiserum to fg-E.E fragments isolated after varying exposures to plasmin all expressed fg-E-neo, but early E fragments exhibited quantitatively less neoantigenic expression than more extensively degraded E fragments. The entire fg-E-neo expression is recovered on a single isolated constituent chain of the E fragment, and immunochemical analysis with antiserum to the isolated constituent chain-bearing fg-E-neo identifies it as a derivative of the gamma chain constituent, exhibits marked stability to physicochemical denaturation and enzymatic degradation. These properties suggest that the neoantigen may be associated with a specific amino acid sequence which is exposed by the cleavage process. The identification and localization of fg-E-neo provides a specific molecular marker site for the characterization of structural and conformational changes associated with catabolism and function of fibrinogen.  相似文献   

17.
Fibrinogen/fibrin and its proteolytic fragments serve as potential adhesive substrates during thrombosis, wound healing, and cancer. In this report we examined the biological response of human melanoma cells exposed to fibrinogen and its naturally occurring plasmic breakdown products that are known constituents of the tumor stroma. Plasmin treatment of fibrinogen first results in fragment X, which is characterized by removal of the COOH-terminal portion of the alpha chain including an RGD sequence (A alpha 572-575). Further digestion leads to fragment D comprising primarily an intact COOH-terminal stretch of the gamma chain containing the platelet adhesion sequence HHLGGAKQAGDV. In a sensitive adhesion assay M21 human melanoma cells utilized integrin alpha v beta 3 to attach to all three of these ligands. However, only intact fibrinogen promoted significant cell spreading, while fragment X produced minimal spreading and fragment D promoted only adhesion. These results indicate that fibrinogen contains at least two alpha v beta 3-dependent adhesive sites and these promote distinct biological responses of human melanoma cells. The differential functional properties of these ligands directly correlate to their relative binding affinity for purified alpha v beta 3 as measured in a solid-phase receptor binding assay. These results provide evidence that a single integrin can promote distinct biological signals depending on the molecular nature of the ligand binding event.  相似文献   

18.
The conformations of the B beta chain of the intact fibrinogen molecule and of various fragments of the B beta chain of fibrinogen that contain the region that is hydrolyzed by thrombin have been compared by an immunochemical method [Sachs, D. H., Schechter, A. N., Eastlake, A., & Anfinsen, C. B. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 3790]. Anti-fibrinogen antibodies were induced in rabbits by immunization with native bovine fibrinogen. An antibody population specific for the native antigenic determinant within the B beta fragment 20-28 was isolated by immunoadsorption. This preparation was to determine the value of Kconf, the equilibrium constant for the interconversion of the nonnative and native conformations of this determinant. Values of Kconf were measured for this determinant within native fibrinogen, the disulfide knot (DSK), CNBrB beta, B beta fragment 16-28, B beta fragment 20-28, and fibrinopeptide B (FpB). 125I-Labeled fibrinogen (125I-F) was used in the determination of Kconf by measuring the competition between 125I-F and the fibrinogen derivatives under study for binding to the purified antibody. For the antigenic region in F, the DSK, and CNBrB beta, the values of Kconf at 4 degrees C were infinity, (5.9 +/- 3.5) X 10(-3), and (1.2 +/- 0.7) X 10(-3), respectively. The values of Kconf for B beta fragment 16-28, B beta fragment 20-28, and FpB at 4 degrees C were less than (6.0 +/- 3.9) X 10(-7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Endothelial cells and activated platelets express integrin-type receptors responsible for adhesion to fibrinogen. We have located distinct integrin-directed endothelial cell and platelet attachment sites on immobilized fibrinogen using a combination of synthetic peptides, fibrinogen fragments, and specific anti-peptide monoclonal antibodies. Endothelial cells exclusively recognize an Arg-Gly-Asp-containing site near the C-terminus of the alpha chain (alpha residues 572-574) but fail to recognize the Arg-Gly-Asp sequence in the N-terminal region of the same chain (alpha residues 95-97). In contrast, platelets do not require either Arg-Gly-Asp sequence for binding to intact fibrinogen and are capable of recognizing, in addition to the alpha 572-574 sequence, a site at the C-terminus of the gamma chain (gamma residues 400-411). These data suggest a molecular mechanism whereby platelets and endothelial cells interact with distinct sites on the fibrinogen molecule during hemostasis and wound healing.  相似文献   

20.
In an abnormal fibrinogen with impaired fibrin monomer polymerization designed as fibrinogen Osaka II, we have identified substitution of Arg by Cys at position 275 of the gamma chain. This Cys is linked to a free cysteine molecule by a disulfide link as evidenced by fast atom bombardment mass spectrometry. This finding was supported by identification of a single cysteine released from isolated abnormal fragment D1 upon reduction. This unique cystine structure at the mutation site has not been reported heretofore in any abnormal protein including fibrinogen. The substitution may well perturb the structure required for fibrin monomer polymerization, specifically that assigned to the carboxyl-terminal D domain of fibrinogen. Indeed, isolated fragment D1 with the Cys substitution failed to inhibit thrombin-mediated clotting of normal fibrinogen and normal fibrin monomer polymerization, while normal fragment D1 inhibited them markedly. Our data seem to provide supporting evidence that the putative polymerization site(s) assigned to the D domain of fibrinogen may be structure-dependent, including the carboxyl-terminal segment of the gamma chain as well as a contiguous region that contains the gamma 275 residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号