首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the interaction of bacteriophage T4D and the outer cell wall of its host, Escherichia coli B, has been investigated. Bacteria with altered or modified cell walls have been obtained by two different growth procedures: (i) growth in high osmolarity medium or (ii) growth in broth in the presence of divalent heavy metal ions. When these altered host cells were washed and subsequently added to regular growth medium, they interacted with added phage particles, but successful infection did not occur. Most of the phage particles released from these treated cells were observed to have full heads and an altered tail structure. The altered phage tails had contracted sheaths and unusual pieces of the bacterial cell wall attached to the distal portion of the exposed phage tail tube. Phage released from bacteria grown in the high osmolarity medium had attached cell wall pieces of two major types, these pieces being either 40 or 21 nm in diameter. The smaller-type cell wall pieces (21 nm) were formed by three spheres each measuring 7 nm in diameter. Phage particles released from cells previously exposed to the divalent metal ions had only one 7-nm cell wall sphere attached to the distal end of the tail tube. It was found that these 7-nm spheres (i) are normal components of the cell wall and are morphologically similar to endotoxin, (ii) are held in place on the cell wall by a component of the cell wall called protein b, and (iii) are most likely the site of penetration of the phage tail tube through which the phage DNA enters the host cell.  相似文献   

2.
The predicted catalytic glutamate residue for transglycosylase activity of bacteriophage T7 gp16 is not essential for phage growth, but is shown to be beneficial during infection of Escherichia coli cells grown to high cell density, conditions in which murein is more highly cross-linked. In the absence of the putative transglycosylase, internalization of the phage genome is significantly delayed during infection. The lytic transglycosylase motif of gp16 is essential for phage growth at temperatures below 20 degrees C, indicating that these growth conditions also lead to increased cross-linking of peptidoglycan. Overexpression of sltY, E. coli soluble lytic transglycosylase, partially complements the defect in infection of mutant phage particles, allowing them to infect at higher efficiencies. Conversely, an sltY deletion increases the latent period of wild-type phage.  相似文献   

3.
Lysozymes have proved useful for analyzing the relation between protein structure and function and evolution. In bacteriophage T4, the major soluble lysozyme is the product of the e gene, gpe (gene product = gp). This lysozyme destroys the wall of its host, Escherichia coli, at the end of infection to release progeny particles. Phage T4 contains two additional lysozymes that facilitate penetration of the baseplates into host cell walls during adsorption. At least one of these, a 44-kD protein, is encoded by gene 5. We show here that a segment of the gp5 lysozyme amino acid sequence, deduced from the DNA sequence of gene 5, is remarkably similar to that of the T4 gene e lysozyme. Both T4 lysozymes are somewhat similar to the lysozyme of the Salmonella phage P22, but there is little significant DNA sequence homology among the two T4 lysozyme genes and the P22 lysozyme gene. We speculate that these lysozymes are adapted to differences in the composition of the cell walls of E. coli and S. typhimurium. The cloned gene 5 of the phage T4 directs synthesis of a 63-kD precursor protein that is approximately 19 kD larger than the gene 5 protein isolated from baseplates. Gp5 first associates with gp26 to form the central hub of this structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Bacteriophage N1 does not irreversibly adsorb to cell walls isolated from its host Micrococcus lysodeikticus strain 1 (ML-1). ML-1 walls do bind the virus in a specific but completely reversibly union. Electron microscopic examination of OsO(4)-treated mixtures of phage and walls revealed phage bound to wall fragments by their tail tips, suggesting that reversible phage attachment to walls involves a "tail-first" adsorption of the virus. Treatment of ML-1 walls with fluorodinitrobenzene confers upon the walls the ability to inactivate N1 phage. The relationship between reversible phage attachment to walls and the mechanism of infection by N1 phage is discussed.  相似文献   

5.
In Vitro Packaging of UV Radiation-Damaged DNA from Bacteriophage T7   总被引:11,自引:3,他引:8       下载免费PDF全文
When DNA from bacteriophage T7 is irradiated with UV light, the efficiency with which this DNA can be packaged in vitro to form viable phage particles is reduced. A comparison between irradiated DNA packaged in vitro and irradiated intact phage particles shows almost identical survival as a function of UV dose when Escherichia coli wild type or polA or uvrA mutants are used as the host. Although uvrA mutants perform less host cell reactivation, the polA strains are identical with wild type in their ability to support the growth of irradiated T7 phage or irradiated T7 DNA packaged in vitro into complete phage. An examination of in vitro repair performed by extracts of T7-infected E.coli suggests that T7 DNA polymerase may substitute for E. coli DNA polymerase I in the resynthesis step of excision repair. Also tested was the ability of a similar in vitro repair system that used extracts from uninfected cells to restore biological activity of irradiated DNA. When T7 DNA damaged by UV irradiation was treated with an endonuclease from Micrococcus luteus that is specific for pyrimidine dimers and then was incubated with an extract of uninfected E. coli capable of removing pyrimidine dimers and restoring the DNA of its original (whole genome size) molecular weight, this DNA showed a higher packaging efficiency than untreated DNA, thus demonstrating that the in vitro repair system partially restored the biological activity of UV-damaged DNA.  相似文献   

6.
Mutants of bacteriophage T4D which fail to induce the deoxyribonucleotide-specific T4 3'-phosphatase have been isolated. These mutants (T4pseT) grow as well as wild-type T4 in most strains of Escherichia coli, but not in the T4-sensitive "Hospital Strain," CT196, or in a derivative strain, CTr5x. Both the formation of infectious centers and the final yield of phage are reduced by 98% when CTr5x is infected by T4pseT mutants. The growth defects are accompanied by a 50% reduction in the rate of T4 DNA synthesis, a decrease in the single-strand length of the DNA product to about one-half the mature length, and greatly reduced packaging of DNA into phage particles. Introduction of an extra-cistronic suppressor mutation (stp) into T4pseT eliminates both the requirement for the T4 3'-phosphatase in infected CTr5x and the other observed effects of the pseT mutations. The pseT gene lies between genes 63 and 31. The stp gene lies in the nonessential region between rIIB and ac. Our results suggest that 3'-phosphoryl termini can disrupt T4 DNA replication to the extent that T4 3'-phosphatase becomes required for phage production.  相似文献   

7.
Novobiocin-supersensitive (NS) mutants which could not grow on plates containing 40 mug or less of novobiocin per ml were isolated from Escherichia coli strain JE1011 (derived from E. coli K-12). Most of these NS mutants were found to have incomplete lipopolysaccharides (LPS), and they lack phosphate diester bridges in their backbone structure, with or without total loss of heptose, to which the phosphate diester is linked, and consequently lack external outer-core oligosaccharides. The phosphate diester bridges in the LPS backbone are apparently very important in forming a cell surface structure resistant to the penetration of antibiotics such as novobiocin, spiramycin, and actinomycin D. NS mutants, with incomplete LPS, lacking phosphates in their backbone structure were found to be resistant to phage T4, and those which also lacked heptose were resistant to phages T4 and T7. In contrast to the generally accepted idea that resistances to phages T3, T4, and T7 are linked genetically, no NS mutant was found to be resistant to T3. The possible structures of the receptors for T4 and T7 are discussed. The positions of novobiocin-supersensitive genes on the chromosome of several of the NS mutants defective in LPS were mapped. The genes were designated lpcA (between ara and lac) and lpcB (between 55 min and 60 min). The latter seemed to be a group of several related genes.  相似文献   

8.
An endo-N-acetyl-glucosaminidase which degrades the murein (peptidoglycan) sacculi of the cell walls of Escherichia coli and Spirillum serpens, but not those of Micrococcus lysodeikticus and Sarcina lutea, is present as a contaminant in a "phospholipase C" from Clostridium perfringens. The specificity of enzyme action was elucidated by reduction of liberated glycosidic groups with NaBH(4) and identification of glucosaminol as the reduction product. This finding contradicts previous reports associating cell wall breakdown with specific phospholipase action.  相似文献   

9.
The antibacterial effect of lemongrass oil, obtained from the aerial part of Cymbopogon citratus, on cells of Escherichia coli was investigated by electron microscopy and by measuring cell wall formation. Two strains of E. coli K-12 were used, one of which required diaminopimelic acid in the growth medium for its murein formation. Lemongrass oil was found to elicit morphological changes like filamentation, inhibition of septum formation, spheroplast formation, production of 'blisters', 'bulges' or mesosomes, as well as lysis and development of abnormally shaped cells. The incorporation of radioactively labelled diaminopimelic acid into the cell wall murein of strain W7, was inhibited by lemongrass oil in a dose dependent way. The sequence of changes induced by lemongrass oil on bacterial cell morphology and also its interference with murein synthesis in E. coli cells were interpreted to involve the penicillin binding proteins PBP 2 and PBP 3.  相似文献   

10.
Preparations of purified cell walls from Staphylococcus aureus were shown to contain small amounts of phospholipid and glycerol teichoic acid. Since these are components of the cell membrane, it is probable that the wall itself contains no lipid, but does retain fragments of membrane because of physical connections between wall and membrane. In walls of S. aureus strain 52A5, which completely lacks ribitol teichoic acid, the only phosphorylated compound identified as a genuine wall component was a phosphorylated derivative of murein that gave rise to muramic acid phosphate on acid hydrolysis. Muramic acid phosphate was also identified in hydrolysates of walls from S. aureus H and strain 52A2.  相似文献   

11.
Cell wall receptor for bacteriophage Mu G(+).   总被引:9,自引:8,他引:1       下载免费PDF全文
The invertible G segment in phage Mu DNA controls the host range of the phage. Depending on the orientation of the G segment, two types of phage particles, G(+) and G(-), are produced which recognize different cell surface receptors. The receptor for Mu G(+) was located in the lipopolysaccharide (LPS) of gram-negative bacteria. The analysis of different LPS core types and of mutants that were made resistant to Mu G(+) shows that the primary receptor site on Escherichia coli K-12 lies in the GlcNAc beta 1 . . . 6Glc alpha 1-2Glc alpha 1-part at the outer end of the LPS. Mu shares this receptor site in E. coli K-12 with the unrelated single-stranded DNA phage St-1. Phage D108, which is related to Mu, and phages P1 and P7, which are unrelated to Mu but contain a homologous invertible DNA segment, have different receptor requirements. Since they also bind to terminal glucose in a different configuration, they adsorb to and infect E. coli K-12 strains with an incomplete LPS core.  相似文献   

12.
Whole cells of Escherichia coli strains 0111, K12 and B as well as the ampicillin-resistant mutant K12 D21 and several lipopolysaccharide (LPS) mutants derived from this strain were analyzed for their molar LPS content per mg dry weight. An increase of the LPS concentration in some LPS mutants was substantiated by analyzing isolated cell walls and relating the molar LPS content to the murein subunit as measure of cell surface area. The increase of LPS was paralleled by increasing amounts of phospholipid while the overall protein content in the outer membrane decreased.According to the pattern of major outer membrane proteins in the various strains and the respective LPS structures, protein-LPS interactions are discussed as important requirements for outer membrane assembly and stability.Abbreviations LPS lipopolysaccharide - SDS sodium dodecyl-sulfate Dedicated to Dr. Otto Lüderitz on the occasion of his 60th birthday  相似文献   

13.
Summary The capacity of E. coli B/r to support recombination and complementation between T4am phages during its life cycle has been analyzed in order to get information on the mechanism of cell division. It was found that a decrease in recombinants and complementation events, which is expected at the time of cell compartmentalization coincides with physical cell separation. Therefore, we conclude that the two halves of a dividing cell remain connected until a very late stage of the division period, thus allowing exchange of DNA and protein molecules.When a synchronized culture of E. coli B/r is infected at different cell age with phage T4, the number of surviving cells increases 10 min prior to cell division. At this time the cells are separated into two independent targets for killing by the phage, although there is still free exchange of DNA and proteins within the whole cell. The localized action of murein metabolizing enzymes at the site of subsequent cell division is likely to create a barriere within the cell envelope that prevents the propagation of the phage killing signal.  相似文献   

14.
Bacteriophage phiX174 is an icosahedral phage which attaches to host cells without the aid of a complex tail assembly. When phiX174 was mixed with cell walls isolated from the bacterial host, the virions attached to the wall fragments and the phage deoxyribonucleic acid (DNA) was released. Attachment was prevented if the cell walls were treated with chloroform. Release of phage DNA, but not viral attachment, was prevented if the cell walls were incubated with lysozyme or if the virions were inactivated with formaldehyde. Treatment of the cell walls with lysozyme released structures which were of uniform size (6.5 by 25 nm). These structures attached phiX174 at the tip of one of its 12 vertices, but the viral DNA was not released. The virions attached to these structures were oriented with their fivefold axis of symmetry normal to the long axis of the structure. No virions were attached to these structures by more than one vertex. Freeze-etch preparations of phiX174 adsorbed to intact bacteria showed that the virions were submerged to one half their diameter into the host cell wall, and the fivefold axis of symmetry was normal to the cell surface. A second cell could not be attached to the outwardly facing vertex of the adsorbed phage and thus the phage could not cross-link two cells. When the virions were labeled with (3)H-leucine, purified, and adsorbed to Escherichia coli cells, about 15% of the radioactivity was recovered as low-molecular-weight material from spheroplasts formed by lysozyme-ethylenediaminetetraacetic acid. Other experiments revealed that about 7% of the total parental virus protein label could be recovered in newly formed progeny virus.  相似文献   

15.
We previously have found that the endotoxin (LPS) of Gram-negative bacteria is a major determinant of macrophage Ia induction during infection with these organisms. Specifically, i.p. injection of Gram-negative bacteria elicits a striking macrophage Ia response in LPS-responder mice but virtually no response in LPS-low-responder mice. As an extension of these findings, in this report we have tested the hypothesis that the inability of LPS-low responder mice to mount an Ia response during Gram-negative infection may in turn impair their capacity for generation of appropriate antibacterial T cell responses. Our results demonstrate that for a variety Gram-negative organisms (Salmonella typhimurium, Salmonella minnesota, and Escherichia coli), both macrophage Ia induction and the generation of Ag-specific T cell responses are controlled by the lps gene. We also have asked whether the expression of additional toxins (other than LPS) by infecting Gram-negative organisms can "override" this lps gene control of macrophage and T cell responses. We have found that infection of LPS-low-responder mice with an E. coli strain that expresses a hemolytic exotoxin (Hly) leads to the induction of macrophage Ia expression as well as the generation of T cell responses to both the Hly molecule and to other E. coli-associated Ag, whereas no responses are generated during infection with a Hly- strain. This result suggests that LPS-low responder mice have no inherent defect in T cell responsiveness to Gram-negative bacterial Ag but rather that these mice fail to receive an LPS-mediated signal required for the induction of Ia expression and subsequent generation of peritoneal T cell immunity. These findings, when taken together with results presented in the accompanying paper, strengthen the argument that bacterial toxin production (and the ability of the host to respond to the toxin) can represent a critical determinant of the induction of macrophage Ia expression and in turn, of Ag-specific T cell responses during bacterial infection.  相似文献   

16.
The adsorbability of T4 on host cells was determined as a function of time after their liberation from infected cells. Freshly liberated (nascent) particles are readily adsorbed but lose their adsorbability with a half-time of about 2 days at 5 C, but only about 20 min at 37 C. They can be made adsorbable again with an alpha-amino acid cofactor like l-tryptophan, and this state of adsorbability can be stabilized by cell wall material from Escherichia coli. Such stabilized particles lose their adsorbability at a rate similar to that at which nascent particles lose theirs. Most freshly liberated particles are observed by means of electron microscopy to have "debris" attached to their baseplates and to have most of their six, long tail fibers free, whereas "old" particles that have lost their adsorbability appear relatively "clean" with most of their tail fibers wrapped around their sheaths. Nascent particles have densities that are lower than those of old particles. The material responsible for nascent adsorbability seems to be a fragment of the host's cell wall, for nascent adsorbability is destroyed by lysozyme. Furthermore, nascent T4 particles liberated from host cells with radioactively labeled walls carry the label in density gradients but lose it as they lose adsorbability. In addition, only a small proportion of particles liberated from infected spheroplasts are nascently adsorbable, whereas most particles liberated from intact cells are adsorbable.  相似文献   

17.
Alteration of Escherichia coli murein during amino acid starvation.   总被引:27,自引:20,他引:7       下载免费PDF全文
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria.  相似文献   

18.
Treatment of gram-negative bacteria with lethal doses of polymyxin B and colistin resulted in the formation of projections of the outer layer of the cell wall. Phages T3, T4, and T7, which use wall lipopolysaccharide as receptors, were specifically prevented from adsorbing to Escherichia coli B cells treated with polymyxin, whereas phages T1, T2, T5, and T6 were not. In the systems of phage P22C-Salmonella typhimurium LT2 and phage C21-S. typhimurium variant SL1069, the phage were prevented from adsorbing to the host cell treated with the antibiotics. Electron microscopic observations show that phage T2 adsorbed irreversibly to the normal smooth surface between the projections on the outer layer caused by the drug treatment. These results indicate that lipopolysaccharide is affected by polymyxin functionally and morphologically, but lipoprotein is not. The purified lipopolysaccharide showed a ribbon-like structure when viewed face on and showed trilamellar structure when viewed edge on. The lipopolysaccharide from E. coli B was irreversibly adsorbed by phages T3, T4, and T7, but not phage T2. Often, phage T4 adsorbed to both sides of the lipopolysaccharide strand at comparable distances. Phage P22C adsorbed through the spikes of the tail-plates to the lipopolysaccharide from S. typhimurium LT2. Lipopolysaccharide which was treated with low doses of the drug (2.5 to 6.25 mug of polymyxin B per ml to 100 mug of lipopolysaccharide per ml) turned into the coiled form and was partially broken down into short segments with coiled form. The loosely coiled lipopolysaccharide retains both its function as the receptor and its trilamellar structure. Treatment with high doses of the drug (12.5 to 25 mug of polymyxin B per ml to 100 mug of lipopolysaccharide per ml) caused the collapse of the trilamellar structure of the strand. These collapsed lipopolysaccharides became flat and fused with each other, making an amorphous mass, and finally they were broken into small collapsed fragments.  相似文献   

19.
The changes in ice nucleation activity of transformed Ina+ Escherichia coli K12 after infection with T4D bacteriophage have been examined. Within 2 min after infection class A nucleation activity (measured at -4 degrees C) fell about 100-1000-fold whilst class B (measured at -5.5 degrees C) and class C (measured at -9 degrees C) nucleation activities increased 50-100-fold and then rapidly decreased. These changes also occurred after interaction with T4D ghost particles or T4D 11-/12- particles. Since ghost particles lack DNA and 11-/12- particles lack short tail fibres, the T4D particles appear to be exerting their effect by the attachment of the phage long tail fibres to the cell. The changes were not influenced by the addition of chloramphenicol.  相似文献   

20.
This report describes a comparison of the efficiency of transduction of genes in E. coli by the generalized transducing bacteriophages T4GT7 and P1CM. Both phages are capable of transducing many genetic markers in E. coli although the frequency of transduction for particular genes varies over a wide range. The frequency of transduction for most genes depends on which transducing phage is used as well as on the donor and recipient bacterial strains. Analysis of T4GT7 phage lysates by cesium chloride density gradient centrifugation shows that transducing phage particles contain primarily bacterial DNA and carry little, if any, phage DNA. In this regard transducing phages P1CM and T4GT7 are similar; both phages package either bacterial or phage DNA but not both DNAs into the same particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号