首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bioconversion of xylose into xylitol in fed-batch fermentation with a recombinantSaccharomyces cerevisiae strain, transformed with the xylose-reductase gene ofPichia stipitis, was studied. When only xylose was fed into the fermentor, the production of xylitol continued until the ethanol that had been produced during an initial growth phase on glucose, was depleted. It was concluded that ethanol acted as a redox-balance-retaining co-substrate. The conversion of high amounts of xylose into xylitol required the addition of ethanol to the feed solution. Under O2-limited conditions, acetic acid accumulated in the fermentation broth, causing poisoning of the yeast at low extracellular pH. Acetic acid toxicity could be avoided by either increasing the pH from 4.5 to 6.5 or by more effective aeration, leading to the further metabolism of acetic acid into cell mass. The best xylitol/ethanol yield, 2.4 gg–1 was achieved under O2-limited conditions. Under anaerobic conditions ethanol could not be used as a co-substrate, because the cell cannot produce ATP for maintenance requirements from ethanol anaerobically. The specific rate of xylitol production decreased with increasing aeration. The initial volumetric productivity increased when xylose was added in portions rather than by continuous feeding, due to a more complete saturation of the transport system and the xylose reductase enzyme.  相似文献   

2.
Conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae expressing the XYL1 gene, encoding xylose reductase, was investigated by using different cosubstrates as generators of reduced cofactors. The effect of a pulse addition of the cosubstrate on xylose conversion in cosubstrate-limited fed-batch cultivation was studied. Glucose, mannose, and fructose, which are transported with high affinity by the same transport system as is xylose, inhibited xylose conversion by 99, 77, and 78%, respectively, reflecting competitive inhibition of xylose transport. Pulse addition of maltose, which is transported by a specific transport system, did not inhibit xylose conversion. Pulse addition of galactose, which is also transported by a specific transporter, inhibited xylose conversion by 51%, in accordance with noncompetitive inhibition between the galactose and glucose/ xylose transport systems. Pulse addition of ethanol inhibited xylose conversion by 15%, explained by inhibition of xylose transport through interference with the hydrophobic regions of the cell membrane. The xylitol yields on the different cosubstrates varied widely. Galactose gave the highest xylitol yield, 5.6 times higher than that for glucose. The difference in redox metabolism of glucose and galactose was suggested to enhance the availability of reduced cofactors for xylose reduction with galactose. The differences in xylitol yield observed between some of the other sugars may also reflect differences in redox metabolism. With all cosubstrates, the xylitol yield was higher under cosubstrate limitation than with cosubstrate excess.  相似文献   

3.
The xylose reductase gene (XYL1) was isolated from Pichia stipitis and Candida shehatae, cloned into YEp-based vectors under the control of ADH2 and PGK1 promoter/terminator cassettes and introduced into Saccharomyces cerevisiae Y294 by electroporation. Shake-flask fermentations were carried out with 5% xylose and 1% galactose, glucose or maltose as co-substrates. Xylose uptake was similar in both the recombinant strains when different co-substrates were used and slowed once the co-substrate was depleted. The recombinant strains converted xylose to xylitol with yields approaching the theoretical maxima. Xylitol production was most rapid when the co-substrate was still present. Approximately 50% of the xylose was not metabolized due to the depletion of the co-substrate. Received: 23 December 1999 / Received revision: 30 June 2000 / Accepted: 1 July 2000  相似文献   

4.
Glucose was used as a cosubstrate under anaerobic conditions in the conversion of xylose to xylitol by a recombinant Saccharomyces cerevisiae strain expressing the xyl1 gene. Glucose was metabolized mainly through glycolysis, with carbon dioxide, acetate, and ethanol as end products and with reduction equivalents generated in the glyceraldehyde-3-phosphate dehydrogenase and acetaldehyde dehydrogenase reactions. At a high glucose supply rate, generation of surplus reduction equivalents resulted in simultaneous ethanol formation. On the other hand, at a low glucose supply rate, additional reduction equivalents were generated by simultaneous ethanol consumption. A significantly lower xylitol formation rate was observed.  相似文献   

5.
【目的】研究不同工业酿酒酵母宿主背景对重组酵母木糖利用效率的影响。【方法】将木糖利用途径的木糖还原酶(XR)、木糖醇脱氢酶(XDH)和木酮糖激酶(XK)编码基因串联后分别转入3株不同的工业酿酒酵母中,得到重组酵母ZQ1、ZQ5和ZQ7。分别对3个木糖途径代谢基因的表达水平、酶活和重组菌株的木糖发酵效率进行比较。【结果】重组菌株在木糖代谢基因转录、酶活性和木糖利用性能方面有很大差异,其中ZQ5木糖代谢能力最强,ZQ7其次,ZQ1木糖利用能力最弱。ZQ7在初始木糖浓度为20 g/L时木糖利用速率快于ZQ5,表明木糖浓度对重组菌发酵性能评价具有影响。【结论】不同菌株的遗传背景和木糖浓度对重组菌木糖利用的影响很大,评价重组酵母的木糖利用需考虑宿主的遗传背景和底物浓度的影响。  相似文献   

6.
Ethanol production from xylose is important for the utilization of lignocellulosic biomass as raw materials. Recently, we reported the development of an industrial xylose-fermenting Saccharomyces cerevisiae strain, MA-R4, which was engineered by chromosomal integration to express the genes encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis along with S. cerevisiae xylulokinase gene constitutively using the alcohol-fermenting flocculent yeast strain, IR-2. IR-2 has the highest xylulose-fermenting ability of the industrial diploid strains, making it a useful host strain for genetically engineering xylose-utilizing S. cerevisiae. To optimize the activities of xylose metabolizing enzymes in the metabolic engineering of IR-2 for further improvement of ethanol production from xylose, we constructed a set of recombinant isogenic strains harboring different combinations of genetic modifications present in MA-R4, and investigated the effect of constitutive expression of xylulokinase and of different levels of xylulokinase and xylose reductase activity on xylose fermentation. This strain comparison showed that constitutive expression of xylulokinase increased ethanol production from xylose at the expense of xylitol excretion, and that high activity of xylose reductase resulted in an increased rate of xylose consumption and an increased glycerol yield. Moreover, strain MA-R6, which has moderate xylulokinase activity, grew slightly better but accumulated more xylitol than strain MA-R4. These results suggest that fine-tuning of introduced enzyme activity in S. cerevisiae is important for improving xylose fermentation to ethanol.  相似文献   

7.
A mixture of rProROL having the full-length prosequence (97 amino acids) for a recombinant lipase of Rhizopus oryzae (rROL) and r28ROL having 28 amino acids of the same prosequence has been produced as active forms by Saccharomyces cerevisiae [Takahashi et al. (1998) J Ferment Bioeng 86: 164–168]. However, the separation of rProROL and r28ROL has not been successful due to their identical behavior on column chromatographs, presumably because of the similarity of their surface properties. The independent production of two different molecular forms of rROL was carried out using KEX2-engineered strains of S. cerevisiae, since r28ROL was predicted to be a product from rProROL by a Kex2-like protease. rProROL was successfully obtained by expression of the ROL gene in the S. cerevisiae kex2 strain in which the KEX2 gene encoding Kex2p was disrupted, while r28ROL was obtained by co-expression of the gene (KEX2Δ613) encoding the soluble form of the C-terminal truncated Kex2 protease (sKex2p). The specific lipase activities of rProROL and r28ROL were 92.9 U/mg and 140 U/mg, respectively. rProROL was stable at pH 2.2–8.0, and showed the optimal reaction temperature to be 30–35 °C with a T 50 of 55 °C (T 50 is the temperature resulting in 50% loss of activity). The values for r28ROL were pH 3.0–10.0, 25–30 °C, and 40 °C, respectively. rProROL was an N-linked glycosylated form, but r28ROL was not. The enhanced thermostability of rProROL did not seem to be due to the N-linked glycosylation, as judged by the results of the Endo H treatment. rProROL had the highest esterase activity toward p-nitrophenyl laurate (C12), whereas r28ROL had the highest esterase activity toward p-nitrophenyl caprylate (C8) and stearate (C18). These results suggest that the distinct properties of these two forms of lipase are caused by the different length of the ROL prosequence. Received: 26 January 1999 / Received last revision: 24 May 1999 / Accepted: 4 June 1999  相似文献   

8.
The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.  相似文献   

9.
Triacylglycerol (TAG) is a microbial oil feedstock for biodiesel production that uses an inexpensive substrate, such as glycerol. Here, we demonstrated the overproduction of TAG from glycerol in engineered Saccharomyces cerevisiae via the glycerol‐3‐phosphate (G3P) pathway by overexpressing the major TAG synthesis. The G3P accumulation was increased 2.4‐fold with the increased glycerol utilization gained by the overexpression of glycerol kinase (GUT1). By overexpressing diacylglycerol acyltransferase (DGA1) and phospholipid diacylglycerol acyltransferase (LRO1), the engineered YPH499 (pGutDgaLro1) strain produced 23.0 mg/L lipids, whereas the YPH499 (pESC‐TRP) strain produced 6.2 mg/L total lipids and showed a lipid content that was increased 1.4‐fold compared with 3.6% for the wild‐type strain after 96 h of cultivation. After 96 h of cultivation using glycerol, the overall content of TAG in the engineered strain, YPH499 (pGutDgaLro1), yielded 8.2% TAG, representing a 2.3‐fold improvement, compared with 3.6% for the wild‐type strain. The results should allow a reduction of costs and a more sustainable production of biodiesel. Biotechnol. Bioeng. 2013; 110: 343–347. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Used for millennia to produce beverages and food, Saccharomyces cerevisiae also became a workhorse in the production of biofuels, most notably bioethanol. Yeast strains have acquired distinct characteristics that are the result of evolutionary adaptation to the stresses of industrial ethanol production. JP1 is a dominant industrial S. cerevisiae strain isolated from a sugarcane mill and is becoming increasingly popular for bioethanol production in Brazil. In this work, we carried out the genetic characterization of this strain and developed a set of tools to permit its genetic manipulation. Using flow cytometry, mating type, and sporulation analysis, we verified that JP1 is diploid and homothallic. Vectors with dominant selective markers for G418, hygromycin B, zeocin, and ρ-fluoro-dl-phenylalanine were used to successfully transform JP1 cells. Also, an auxotrophic ura3 mutant strain of JP1 was created by gene disruption using integration cassettes with dominant markers flanked by loxP sites. Marker excision was accomplished by the Cre/loxP system. The resulting auxotrophic strain was successfully transformed with an episomal vector that allowed green fluorescent protein expression.  相似文献   

11.
Summary The intergenic region of the Saccharomyces cerevisiae GAL1-GAL10 divergent promoters has been circularized in vitro in different topological states. In defined conditions, purified homologous RNA polymerase II forms two stable complexes (half-life -5 h) with this DNA in the presence of the four ribonucleotides, as determined by measurement (Gamper and Hearst 1983) of the amount and stability of the resulting unwinding. Each stable complex induces in the closed DNA domain a region of hypersensitivity to P1 endonuclease. The two induced hypersensitive regions are very similar: each maps on one promoter, spans over the 100 bp DNA sequence that encompasses the RNA Initiation Sites (RIS) and the TATA box, is composed by three subregions (one on the RIS, one proximal or overlapping the TATA sequence, one intermediate). We show that this promoter-localized interaction is supercoil-dependent.  相似文献   

12.
The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l–1 xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h–1 vs 0.05 h–1). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l–1 xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g–1 CDW h–1 to 0.017 g g–1 CDW h–1 and the yield from 0.09 g g–1 xylose to 0.14 g g–1 xylose, respectively.  相似文献   

13.
Use of super strains exhibiting tolerance to high temperature, acidity and ethanol is a promising way to make ethanol production economically feasible. We describe here the breeding and performance of such a multiple-tolerant strain of Saccharomyces cerevisiae generated by a spore-to-cell hybridization technique without recombinant DNA technology. A heterothallic strain showing a high-temperature (41°C) tolerant (Htg(+)) phenotype, a derivative from a strain isolated from nature, was crossed with a homothallic strain displaying high-ethanol productivity (Hep(+)), a stock culture at the Thailand Institute of Scientific and Technological Research. The resultant hybrid TJ14 displayed ability to rapidly utilize glucose, and produced ethanol (46.6g/l) from 10% glucose fermentation medium at high temperature (41°C). Not only ethanol productivity at 41°C but also acid tolerance (Acd(+)) was improved in TJ14 as compared with its parental strains, enabling TJ14 to grow in liquid medium even at pH 3. TJ14 maintained high ethanol productivity (46.0g/l) from 10% glucose when fermentation was done under multiple-stress conditions (41°C and pH 3.5). Furthermore, when TJ14 was subjected to a repeated-batch fermentation scheme, the growth and ethanol production of TJ14 were maintained at excellent levels over ten cycles of fermentation. Thus, the multiple-stress (Htg(+) Hep(+) Acd(+)) resistant strain TJ14 should be useful for cost-effective bioethanol production under high-temperature and acidic conditions.  相似文献   

14.
15.
In vitro cumulative gas production was used to evaluate a series of rice straws for their fermentability. The straws comprised ten different varieties which had been grown at two locations (higher and lower altitudes), during two seasons (wet and dry). Curves were fitted, and the resulting parameters, DM loss and gas yield, were tested for significant differences by an analysis of variance using the Tukey test. Significant differences between the parameters of the fitted curves were found between the offered and refused straw, the material grown at different altitudes, the material from the wet and dry seasons, and between varieties. Significant interactions were found between the environmental factors and cultivar, for the offered and refused feeds.  相似文献   

16.
The product of the VPS1 gene, Vps1p, is required for the sorting of soluble vacuolar proteins in the yeast Saccharomyces cerevisiae. We demonstrate here that Vps1p, which contains a consensus tripartite motif for guanine nucleotide binding, is capable of binding and hydrolyzing GTP. Vps1p is a member of a subfamily of large GTP-binding proteins whose members include the vertebrate Mx proteins, the yeast MGM1 protein, the Drosophila melanogaster shibire protein, and dynamin, a bovine brain protein that bundles microtubules in vitro. Disruption of microtubules did not affect the fidelity or kinetics of vacuolar protein sorting, indicating that Vps1p function is not dependent on microtubules. Based on mutational analyses, we propose a two-domain model for Vps1p function. When VPS1 was treated with hydroxylamine, half of all mutations isolated were found to be dominant negative with respect to vacuolar protein sorting. All of the dominant-negative mutations analyzed further mapped to the amino-terminal half of Vps1p and gave rise to full-length protein products. In contrast, recessive mutations gave rise to truncated or unstable protein products. Two large deletion mutations in VPS1 were created to further investigate Vps1p function. A mutant form of Vps1p lacking the carboxy-terminal half of the protein retained the capacity to bind GTP and did not interfere with sorting in a wild-type background. A mutant form of Vps1p lacking the entire GTP-binding domain interfered with vacuolar protein sorting in wild-type cells. We suggest that the amino-terminal domain of Vps1p provides a GTP-binding and hydrolyzing activity required for vacuolar protein sorting, and the carboxy-terminal domain mediates Vps1p association with an as yet unidentified component of the sorting apparatus.  相似文献   

17.
Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h−1. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l−1). However, these glycerol concentrations were below 10% of those observed with a Gpd+ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.  相似文献   

18.
Summary A method has been developed for the transfer of genes from other yeast strains and species to industrial yeast strains, using a haploid, kar1-1 mutant strain of Saccharomyces cerevisiae as a vector. The sta2 gene, conferring the ability to metabolize starch was transferred from an autotrophic haploid strain of S. cerevisiae (S. diastaticus) and the melibiose-metabolism (mel) gene(s), from S. kluyveri, to the kar1-1 mutant [K5-5A; ( ade2 his4 can1 gal) by normal mating and protoplast fusion. From this strain, the genes were transferred to baker's yeast and brewing yeast strains, which did not utilize starch, and to baker's yeast strains, which did not utilize melibiose, by protoplast fusion, spore-cell pairing, or rare-mating. Strains that utilized starch or melibiose were obtained by all three methods. Pulsed-field gel electrophoresis preparations showed little change in the mobility of the chromosomes of the hybrids. The most probable explanation for the results obtained is that single chromosomes were transferred, first, from the donor strains to the kar1-1 haploid mutant strain, and then from the kar1-1 vector to the recipient industrial strain of S. cerevisiae. The transfer of the genes is probably accomplished through formation of disomic strains and the, in the case of the hybrids that metabolize starch, by integration of the sta2 gene into the genome of the industrial yeast strains.  相似文献   

19.
In the simultaneous saccharification and fermentation to ethanol of 100 g l(-1) microcrystalline cellulose, the cellobiose-fermenting recombinant Klebsiella oxytoca P2 outperformed a range of cellobiose-fermenting yeasts used in earlier work, despite producing less ethanol than reported earlier for this organism under similar conditions. The time taken by K. oxytoca P2 to produce up to about 33 g l(-1) ethanol was much less than for any other organism investigated, including ethanol-tolerant strains of Saccharomyces pastorianus, Kluyveromyces marxianus and Zymomonas mobilis. Ultimately, it produced slightly less ethanol (maximum 36 g l(-1)) than these organisms, reflecting its lower ethanol tolerance. Significant advantages were obtained by co-culturing K. oxytoca P2 with S. pastorianus, K. marxianus or Z. mobilis, either isothermally, or in conjunction with temperature-profiling to raise the cellulase activity. Co-cultures produced significantly more ethanol, more rapidly, than either of the constituent strains in pure culture at the same inoculum density. K. oxytoca P2 dominated the early stages of the co-cultures, with ethanol production in the later stages due principally to the more ethanol tolerant strain. The usefulness of K. oxytoca P2 in cellulose simultaneous saccharification and fermentation should be improved by mutation of the strain to increase its ethanol tolerance.  相似文献   

20.
Sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid tropics that also receives growing attention in genetic research. A comprehensive reference map of the sorghum genome would be an essential research tool. Here, a combined sorghum linkage map from two recombinant inbred populations was constructed using AFLP, SSR, RFLP and RAPD markers. The map was aligned with other published sorghum maps which are briefly reviewed. The two recombinant inbred populations (RIPs) analyzed in this study consisted of 225 (RIP 1) and 226 (RIP 2) F3:5 lines, developed from the crosses IS 9830 2 E 36-1 (RIP 1) and N 13 2 E 36-1 (RIP 2), respectively. The genetic map of RIP 1 had a total length of 1,265 cM (Haldane), with 187 markers (125 AFLPs, 45 SSRs, 14 RFLPs, 3 RAPDs) distributed over ten linkage groups. The map of RIP 2 spanned 1,410 cM and contained 228 markers (158 AFLPs, 54 SSRs, 16 RFLPs) in 12 linkage groups. The combined map of the two RIPs contained 339 markers (249 AFLPs, 63 SSRs, 24 RFLPs, 3 RAPDs) on 11 linkage groups and had a length of 1,424 cM. It was in good agreement with other sorghum linkage maps, from which it deviated by a few apparent inversions, deletions, and additional distal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号