首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The constitutive transport element (CTE) of the simian type D retroviruses overcomes nuclear retention and allows nuclear export of unspliced viral RNAs by recruiting TAP, a host factor which is thought to be required for export of cellular mRNAs. In this report, we show that the first 372 amino acid residues of TAP, comprising a stretch of leucine-rich repeats, are both necessary and sufficient for binding to the CTE RNA and promoting its export to the cytoplasm. Moreover, like the full-length protein, this domain migrates to the cytoplasm upon nuclear co-injection with the CTE RNA. Together, these results indicate that the CTE-binding domain includes the signals for nuclear export. We also describe a derivative of TAP that bears a triple amino acid substitution within the CTE-binding domain and substantially reduces the export of mRNAs from the nucleus. This provides further evidence for a role for TAP in this process. Thus, the CTE-binding domain of TAP defines a novel RNA-binding motif which has dual functions, both recognizing the CTE RNA and interacting with other components of the nuclear transport machinery.  相似文献   

2.
Messenger RNAs are exported from the nucleus as large ribonucleoprotein complexes (mRNPs). To date, proteins implicated in this process include TAP/Mex67p and RAE1/Gle2p and are distinct from the nuclear transport receptors of the beta-related, Ran-binding protein family. Mex67p is essential for mRNA export in yeast. Its vertebrate homolog TAP has been implicated in the export of cellular mRNAs and of simian type D viral RNAs bearing the constitutive transport element (CTE). Here we show that TAP is predominantly localized in the nucleoplasm and at both the nucleoplasmic and cytoplasmic faces of the nuclear pore complex (NPC). TAP interacts with multiple components of the NPC including the nucleoporins CAN, Nup98, Nup153, p62, and with three major NPC subcomplexes. The nucleoporin-binding domain of TAP comprises residues 508-619. In HeLa cells, this domain is necessary and sufficient to target GFP-TAP fusions to the nuclear rim. Moreover, the isolated domain strongly competes multiple export pathways in vivo, probably by blocking binding sites on the NPC that are shared with other transport receptors. Microinjection experiments implicate this domain in the export of specific CTE-containing RNAs. Finally, we show that TAP interacts with transportin and with two proteins implicated in the export of cellular mRNAs: RAE1/hGle2 and E1B-AP5. The interaction of TAP with nucleoporins, its direct binding to the CTE RNA, and its association with two mRNP binding proteins suggest that TAP is an RNA export mediator that may bridge the interaction between specific RNP export substrates and the NPC.  相似文献   

3.
The nuclear export of the unspliced type D retrovirus mRNA depends on the cis-acting constitutive transport RNA element (CTE) that has been shown to interact with the human TAP (hTAP) protein promoting the export of the CTE-containing mRNAs. We report here that hTAP is a 619-amino-acid protein extending the previously identified protein by another 60 residues at the N terminus and that hTAP shares high homology with the predicted rat and mouse TAP proteins. We found that hTAP is a nuclear protein that accumulates in the nuclear rim and the nucleoplasm. We further demonstrated that hTAP is able to shuttle between the nucleus and the cytoplasm. Identification of the signals responsible for nuclear import (NLS) and export (NES) revealed that they are distinct but partially overlapping. NLS and NES of hTAP are active transferable signals that do not share similarities with known elements. The C-terminal portion contributes further to hTAP's nuclear retention and contains a signal(s) for nuclear rim association. Taken together, our data show that hTAP is a dynamic protein capable of bidirectional trafficking across the nuclear envelope. These data further support hTAP's role as an export factor of the CTE-containing mRNAs.  相似文献   

4.
Human TAP is implicated in mRNA nuclear export and is used by simian type D retroviruses to export their unspliced genomic RNA to the cytoplasm of the host cell. We have determined the crystal structure of the minimal TAP fragment that binds the constitutive transport element (CTE) of retroviral RNAs. Unexpectedly, we find the fragment consists of a ribonucleoprotein (RNP) domain, which is not identifiable by its sequence, and a leucine-rich repeat (LRR) domain. The non-canonical RNP domain functions as the general RNA-binding portion of the fragment. The LRR domain is required in cis to the RNP domain for CTE RNA binding. The structural and biochemical properties of the domains point to a remarkable similarity with the U2B"(RNP)-U2A'(LRR) spliceosomal heterodimer. Our in vitro and in vivo functional studies using structure-based mutants suggest that a phylogenetically conserved surface of the LRR domain of TAP may have different roles in the export of viral and cellular RNAs.  相似文献   

5.
The constitutive transport elements (CTEs) of type D retroviruses are cis-acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason-Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV-1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE-containing lariat occurs when wild-type CTE, but not a mutant form, is inserted into the pre-mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non-functional variants, making these proteins candidates for the sequestered mRNA export factors.  相似文献   

6.
Vertebrate TAP and its yeast ortholog Mex67p are involved in the export of messenger RNAs from the nucleus. TAP has also been implicated in the export of simian type D viral RNAs bearing the constitutive transport element (CTE). Although TAP directly interacts with CTE-bearing RNAs, the mode of interaction of TAP/Mex67p with cellular mRNAs is different from that with the CTE RNA and is likely to be mediated by protein-protein interactions. Here we show that Mex67p directly interacts with Yra1p, an essential yeast hnRNP-like protein. This interaction is evolutionarily conserved as Yra1p also interacts with TAP. Conditional expression in yeast cells implicates Yra1 p in the export of cellular mRNAs. Database searches revealed that Yra1p belongs to an evolutionarily conserved family of hnRNP-like proteins having more than one member in Mus musculus, Xenopus laevis, Caenorhabditis elegans, and Schizosaccharomyces pombe and at least one member in several species including plants. The murine members of the family directly interact with TAP. Because members of this protein family are characterized by the presence of one RNP-motif RNA-binding domain and exhibit RNA-binding activity, we called these proteins REF-bps for RNA and export factor binding proteins. Thus, Yra1p and members of the REF family of hnRNP-like proteins may facilitate the interaction of TAP/Mex67p with cellular mRNAs.  相似文献   

7.
Mex67, the homolog of human TAP, is not an essential mRNA export factor in Schizosaccharomyces pombe. Here we show that S. pombe encodes a homolog of the TAP cofactor that we have also named p15, whose function in mRNA export is not essential. We have identified and characterized two distinct nuclear export activities, nuclear export signal (NES) I and NES II, within the region of amino acids 434-509 of Mex67. These residues map within the known NTF2-like fold of TAP (amino acids 371-551). We show that the homologs of these two NESs are present and are functionally conserved in TAP. The NES I, NES II, and NES I + II of TAP and Mex67 directly bind with -phenylalanine-glycine (-FG)-containing sequences of S. pombe Nup159 and Nup98 but not with human p62. Mutants of NES I or NES II of Mex67/TAP that do not bind -FG Nup159 and Nup98 in vitro are unable to mediate nuclear export of a heterologous protein in S. pombe and in HeLa cells. Fused with the RNA recognition motifs (RRMs) of Crp79 and green fluorescent protein (GFP) (RRM-NES-GFP), the NES I and NES II of Mex67 or TAP can suppress the mRNA export defect of the Deltap15 rae1-167 synthetic lethal S. pombe strain, suggesting that the NESs can function in the absence of p15. These novel nuclear export sequences may provide additional routes for delivering Mex67/TAP to the nuclear pore complex.  相似文献   

8.
Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we show that TAP belongs to an evolutionarily conserved family of proteins that has more than one member in higher eukaryotes. Not only the overall domain organization but also residues important for p15 and nucleoporin interaction are conserved in most family members. We characterize two of four human TAP homologues and show that one of them, NXF2, binds RNA, localizes to the nuclear envelope, and exhibits RNA export activity. NXF3, which does not bind RNA or localize to the nuclear rim, has no RNA export activity. Database searches revealed that although only one p15 (nxt) gene is present in the Drosophila melanogaster and Caenorhabditis elegans genomes, there is at least one additional p15 homologue (p15-2 [also called NXT2]) encoded by the human genome. Both human p15 homologues bind TAP, NXF2, and NXF3. Together, our results indicate that the TAP-p15 mRNA export pathway has diversified in higher eukaryotes compared to yeast, perhaps reflecting a greater substrate complexity.  相似文献   

9.
Export of unspliced mRNA to the cytoplasm is required for the replication of all retroviruses. In simian type D retroviruses, the RNA export is mediated by the constitutive transport element (CTE) that binds the cellular nuclear export factor 1, NXF1(TAP). To search for potential cellular RNA substrates for NXF1, we have set up an in vitro selection procedure, using an RNA library expressed from total human genomic DNA. A sequence that was isolated most frequently as independent clones exhibits extensive homology to the 3' untranslated region of expressed LINE1 (L1) retrotransposons. This region, termed L1-NXF1 binding element (L1-NBE) bears no structural resemblance to the viral CTE, but binds NXF1 as strongly as CTE, based on gel mobility shift competition assays. A deletion analysis of the NXF1 protein reveals that CTE and L1-NBE have different, but overlapping, binding domains on NXF1. Placed in an intron, L1-NBE is capable of mediating nuclear export of lariat RNA species in Xenopus laevis oocytes and of an unspliced HIV-1 derived RNA in human 293 cells, suggesting that it may function as a nuclear export element for the intronless L1 mRNA.  相似文献   

10.
11.
12.
Nuclear export of incompletely spliced RNAs is a prerequisite for retroviral replication. Complex retroviruses like human immunodeficiency virus (HIV) encode a viral transport factor (Rev), which binds to its target sequence on the RNA genome and directs it into the Crm-1-mediated export pathway. Other retroviruses, like Mason-Pfizer monkey virus, contain cis-acting constitutive RNA transport elements (CTE) which achieve nuclear export of intron-containing RNA via cellular transport factors. Here, we describe the identification and characterization of a novel cis-acting orientation-dependent RNA expression element in the coding region of the murine intracisternal A-type particle (IAP) MIA14. This IAP expression element (IAPE) can functionally replace the Rev system in the expression of HIV-1 Gag proteins but functions independently of Crm-1. The presence of this element is needed for the expression of the IAP Gag proteins, indicating its biological significance. The IAPE can be functionally replaced by placing a CTE on the MIA14 RNA, further supporting its role in mRNA export. Northern blot analysis revealed that total RNA, as well as cytoplasmic RNA, was increased when the element was present. The element was mapped to a predicted stem-loop structure in the 3' part of the pol open reading frame. There was no overall homology between the IAPE and the CTE, but there was complete sequence identity between short putative single-stranded loops. Deletion of these loops from the IAPE severely reduced Rev-independent Gag expression.  相似文献   

13.
Cells normally restrict the nuclear export and expression of intron-containing mRNA. In many cell lines, this restriction can be overcome by inclusion of cis-acting elements, such as the Mason-Pfizer monkey virus constitutive transport element (CTE), in the RNA. In contrast, we observed that CTE-mediated expression from human immunodeficiency virus Gag-Pol reporters was very inefficient in 293 and 293T cells. However, addition of Sam68 led to a dramatic increase in the amount of Gag-Pol proteins produced in these cells. Enhancement of CTE function was not seen when a Sam68 point mutant (G178E) that is defective for RNA binding was used. Additionally, the effect of Sam68 was inhibited in a dose-dependent manner by coexpression of an activated form of the nuclear kinase Sik/BRK that hyperphosphorylated Sam68. RNA analysis showed that cytoplasmic Gag-Pol-CTE RNA levels were only slightly enhanced by the addition of Sam68, compared to a 60- to 70-fold increase in the levels of Gag-Pol protein expression. Thus, in this system, Sam68 functioned to enhance the cytoplasmic utilization of RNA containing the CTE. These results suggest that Sam68 may interact with specific RNAs in the nucleus to provide a "mark" that affects their cytoplasmic fate. They also provide further evidence of links between signal transduction and RNA utilization.  相似文献   

14.
TAP, the human homologue of the yeast protein Mex67p, has been proposed to serve a role in mRNA export in mammalian cells. We have examined the ability of TAP to mediate export of Rev response element (RRE)-containing human immunodeficiency virus (HIV) RNA, a well-characterized export substrate in mammalian cells. To do this, the TAP gene was fused in frame to either RevM10 or RevDelta78-79. These proteins are nonfunctional Rev mutant proteins that can bind to HIV RNA containing the RRE in vivo but are unable to mediate the export of this RNA to the cytoplasm. However, the fusion of TAP to either of these mutant proteins gave rise to chimeric proteins that were able to complement Rev function. Significantly, cotransfection with a vector expressing NXT1 (p15), an NTF2-related cellular factor that binds to TAP, led to dramatic enhancement of the ability of the chimeric proteins to mediate RNA export. Mutant-protein analysis demonstrated that the domain necessary for nuclear export mapped to the C-terminal region of TAP and required the domain that interacts with NXT1, as well as the region that has been shown to interact with nucleoporins. RevM10-TAP function was leptomycin B insensitive. In contrast, the function of this protein was inhibited by DeltaCAN, a protein consisting of part of the FG repeat domain of CAN/Nup214. These results show that TAP can complement Rev nuclear export signal function and redirect the export of intron-containing RNA to a CRM1-independent pathway. These experiments support the role of TAP as an RNA export factor in mammalian cells. In addition, they indicate that NXT1 serves as a crucial cellular cofactor in this process.  相似文献   

15.
The hypothesis that the cellular protein Crm1 mediates human immunodeficiency virus type 1 (HIV-1) Rev-dependent nuclear export posits that Crm1 can directly interact both with the Rev nuclear export signal (NES) and with cellular nucleoporins. Here, we demonstrate that Crm1 is indeed able to interact with active but not defective forms of the HIV-1 Rev NES and of NESs found in other retroviral nuclear export factors. In addition, we demonstrate that Crm1 can bind the Rev NES when Rev is assembled onto the Rev response element RNA target and that Crm1, like Rev, is a nucleocytoplasmic shuttle protein. Crm1 also specifically binds the Rev NES in vitro, although this latter interaction is detectable only in the presence of added Ran · GTP. Overexpression of a truncated, defective form of the nucleoporin Nup214/CAN, termed ΔCAN, that retains Crm1 binding ability resulted in the effective inhibition of HIV-1 Rev or human T-cell leukemia virus Rex-dependent gene expression. In contrast, ΔCAN had no significant affect on Mason-Pfizer monkey virus constitutive transport element (MPMV CTE)-dependent nuclear RNA export or on the expression of RNAs dependent on the cellular mRNA export pathway. As a result, ΔCAN specifically blocked late, but not early, HIV-1 gene expression in HIV-1-infected cells. These data strongly validate Crm1 as a cellular cofactor for HIV-1 Rev and demonstrate that the MPMV CTE nuclear RNA export pathway uses a distinct, Crm1-independent mechanism. In addition, these data identify a novel and highly potent inhibitor of leucine-rich NES-dependent nuclear export.  相似文献   

16.
Herpes simplex virus type 1 (HSV-1) protein ICP27 facilitates the export of viral intronless mRNAs. ICP27 shuttles between the nucleus and cytoplasm, which has been shown to require a leucine-rich nuclear export sequence (NES). ICP27 export was reported to be sensitive to the CRM1 inhibitor leptomycin B (LMB) in HSV-1-infected cells but not in Xenopus oocytes, where ICP27 interacts with the export factor Aly/REF to access the TAP export pathway. Here, we show that ICP27 interacts with Aly/REF in HSV-1-infected mammalian cells and that Aly/REF stimulates export of viral intronless RNAs but does not cross-link to these RNAs. During infection, Aly/REF was no longer associated with splicing factor SC35 but moved into structures that colocalized with ICP27, suggesting that ICP27 recruits Aly/REF from spliceosomes to viral intronless RNAs. Further, ICP27 was found to interact in vivo with TAP but not with CRM1. In vitro export assays showed that ICP27 export was not sensitive to LMB but was blocked by a dominant-negative TAP deletion mutant lacking the nucleoporin interaction domain. These data suggest that ICP27 uses the TAP pathway to export viral RNAs. Interestingly, the leucine-rich N-terminal sequence was required for efficient export, even though ICP27 export was LMB insensitive. Thus, this region is required for efficient ICP27 export but does not function as a CRM1-dependent NES.  相似文献   

17.
A common feature of gene expression in all retroviruses is that unspliced, intron-containing RNA is exported to the cytoplasm despite the fact that cellular RNAs which contain introns are usually restricted to the nucleus. In complex retroviruses, the export of intron-containing RNA is mediated by specific viral regulatory proteins (e.g., human immunodeficiency virus type 1 [HIV-1] Rev) that bind to elements in the viral RNA. However, simpler retroviruses do not encode such regulatory proteins. Here we show that the genome of the simpler retrovirus Mason-Pfizer monkey virus (MPMV) contains an element that serves as an autonomous nuclear export signal for intron-containing RNA. This element is essential for MPMV replication; however, its function can be complemented by HIV-1 Rev and the Rev-responsive element. The element can also facilitate the export of cellular intron-containing RNA. These results suggest that the MPMV element mimics cellular RNA transport signals and mediates RNA export through interaction with endogenous cellular factors.  相似文献   

18.
Human TAP and its yeast orthologue Mex67p are members of the multigene family of NXF proteins. A conserved feature of NXFs is a leucine-rich repeat domain (LRR) followed by a region related to the nuclear transport factor 2 (the NTF2-like domain). The NTF2-like domain of metazoan NXFs heterodimerizes with a protein known as p15 or NXT. A C-terminal region related to ubiquitin-associated domains (the UBA-like domain) is present in most, but not all NXF proteins. Saccharomyces cerevisiae Mex67p and Caenorhabditis elegans NXF1 are essential for the export of messenger RNA from the nucleus. Human TAP mediates the export of simian type D retroviral RNAs bearing the constitutive transport element, but the precise role of TAP and p15 in mRNA nuclear export has not yet been established. Here we show that overexpression of TAP/p15 heterodimers bypasses nuclear retention and stimulates the export of mRNAs that are otherwise exported inefficiently. This stimulation of mRNA export is strongly reduced by removing the UBA-like domain of TAP and abolished by deleting the LRR domain or the NTF2-like domain. Similar results are obtained when TAP/p15 heterodimers are directly tethered to the RNA export cargo. Our data indicate that formation of TAP/p15 heterodimers is required for TAP-mediated export of mRNA and show that the LRR domain of TAP plays an essential role in this process.  相似文献   

19.
The complex retroviruses such as human immunodeficiency virus, type 1, employ a virally encoded protein, Rev, to mediate the nuclear export of unspliced and partially spliced mRNA. In contrast, the simian type D retroviruses act through a cis-acting constitutive transport element (CTE) that presumably interacts directly with cellular export proteins. We first reported that RNA helicase A (RHA) is a shuttle protein that binds to functional CTE in vitro and in vivo. Recently, we isolated a novel protein, HAP95, that specifically binds to the nuclear transport domain of RHA and up-regulates CTE-mediated gene expression. Here, using truncation and deletion mutations, we mapped the domains of HAP95 that are important for RHA binding, transactivation of CTE, and nuclear cytoplasmic shuttling. We report evidence for a novel nuclear export signal in HAP95 and showed that the domains involved in RHA binding and nuclear localization are required for CTE activation. Finally, we showed that HAP95 synergizes significantly with RHA on CTE-mediated reporter gene expression and promotes nuclear export of unspliced mRNA in transfected cells. Taken together, these data support the proposal that HAP95 specifically facilitates CTE-mediated gene expression by directly binding to RHA.  相似文献   

20.
Viruses have been invaluable tools for discovering key pathways of nucleocytoplasmic transport. Conversely, disruption of specific nuclear transport pathways, are crucial for the productive life cycle of some viruses. The major cellular mRNA export pathway, which uses TAP (NXF1)/p15(NXT) as receptor, was discovered as a result of TAP interaction with CTE-containing RNAs from Mason-Pfizer Monkey Virus. In addition, CRM1 or exportin 1, which is a transport receptor that mediates nuclear export of proteins, snRNAs, rRNAs and a small subset of mRNAs, was discovered as an interacting partner of the Rev protein of HIV1. Viruses may disrupt the nuclear transport machinery to prevent host antiviral response. VSV Matrix (M) protein inhibits mRNA export by forming a complex with the mRNA export factor Rae1 whereas poliovirus inhibits nuclear import of proteins by probably degrading Nup62 and Nup153. Hence, this review focuses on viruses as tools and as disruptors of nucleocytoplasmic trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号