首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human osteosarcoma cell line, HOS TE85 cells, and a mouse osteoblastic cell line, MC3T3-E1 cells, were cultured for 3 days in a medium containing various concentrations of menaquinone-4 (vitamin K2). As a result, the proliferation of HOS cells was suppressed by vitamin K2 in a dose dependent manner up to 56% of control by 10(-7)M of vitamin K2 and that of MC3T3-E1 cells was suppressed to 84% of control by 10(-6)M of vitamin K2. Vitamin K2 increased alkaline phosphatase activity in both kinds of cells. Warfarin counteracted the effect of vitamin K2 on osteoblastic cell proliferation. Our results show that vitamin K2 modulates proliferation and function of osteoblastic cells by some mechanisms including gamma-carboxylation system.  相似文献   

2.
Summary We report the characterization of human osteoblastic cells that were derived from the surface of trabecular bone fragments. After removal of bone marrow cells, the bone lining osteoblastic cells lining the bone surface were obtained by migration and proliferation from the trabecular surface onto a nylon mesh. The isolated population proliferated in culture and exhibited osteoblastic phenotype. Cultured cells show a regular arrangment in vitro and exhibited multiple interconnecting junctions on scanning electron microscopic examination. Immunocytochemical staining showed that the cells produced almost exclusively type I collagen. Bone-surface-derived cells responded to 1–34 human parathyroid hormone by increasing intracellular cyclic AMP. Cell cultures exhibited high alkaline phosphatase activity, which was unaffected by 1,25 (OH)2 vitamin D. Untreated cells produced high levels of osteocalcin, a bone-specific protein, and they responded to 1,25(OH) vitamin D by increasing osteocalcin synthesis in a dose-dependent manner. Although cells cultured for up to 5 mo. still produced osteocalcin, the response to 1,25(OH)2D decreased after multiple passages. This study shows that the bone cell populations isolated from trabecular bone surface are enriched in osteoblast precursors and mature osteoblstic cells.  相似文献   

3.
4.
This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function.  相似文献   

5.
6.
7.
In vitro models of bone cells are important for the study of bone biology, including the regulation of bone formation and resorption. In this study, we have validated an in vitro model of human osteoblastic cells obtained from bone marrow biopsies from healthy, young volunteers, aged 20-31 years. Osteoblast phenotypes were induced by either dexamethasone (Dex) or bone morphogenetic protein-2 (BMP-2). Bone marrow was obtained from biopsies at the posterior iliac spine. Cells were isolated by gradient centrifugation and grown to confluence. Cells were treated with 1 nM 1,25-dihydroxyvitamin D (vitamin D), 100 nM Dex, and/or 100 ng/ml BMP-2. The osteoblast phenotype was assessed as alkaline phosphatase (AP) activity/staining, production of osteocalcin and procollagen type 1 (P1NP), parathyroid hormone (PTH)-induced cyclic adenosine mono-phosphate (cAMP) production, and in vitro mineralization. AP activity was increased by Dex, but not by BMP-2 treatment. P1NP production was decreased after Dex treatment, while BMP-2 had no effect on P1NP levels. Osteocalcin production was low in cultures not stimulated with vitamin D. Dex or BMP-2 treatment alone did not affect the basic osteocalcin levels, but in combination with vitamin D, BMP-2 increased the osteocalcin production, while Dex treatment completely suppressed osteocalcin production. Further, PTH-induced cAMP production was greatly enhanced by Dex treatment, whereas BMP-2 did not affect cAMP production. Finally, in vitro mineralization was greatly enhanced in cultures enriched with either BMP-2 or Dex. Cell proliferation was only increased significantly by Dex treatment. In conclusion, the model described produces cells with an osteoblastic phenotype, and both Dex and BMP-2 can be used as osteoblast inducers. However, the two treatments produce osteoblastic cells with different phenotypic characteristics, and a selective activation of some of the most important genes and functions of the mature osteoblast can thus be performed in vitro.  相似文献   

8.
Greenstein RJ  Su L  Brown ST 《PloS one》2012,7(1):e29631

Background

The role of vitamins in the combat of disease is usually conceptualized as acting by modulating the immune response of an infected, eukaryotic host. We hypothesized that some vitamins may directly influence the growth of prokaryotes, particularly mycobacteria.

Methods

The effect of four fat-soluble vitamins was studied in radiometric Bactec® culture. The vitamins were A (including a precursor and three metabolites,) D, E and K. We evaluated eight strains of three mycobacterial species (four of M. avium subspecies paratuberculosis (MAP), two of M. avium and two of M. tb. complex).

Principal Findings

Vitamins A and D cause dose-dependent inhibition of all three mycobacterial species studied. Vitamin A is consistently more inhibitory than vitamin D. The vitamin A precursor, β-carotene, is not inhibitory, whereas three vitamin A metabolites cause inhibition. Vitamin K has no effect. Vitamin E causes negligible inhibition in a single strain.

Significance

We show that vitamin A, its metabolites Retinyl acetate, Retinoic acid and 13-cis Retinoic acid and vitamin D directly inhibit mycobacterial growth in culture. These data are compatible with the hypothesis that complementing the immune response of multicellular organisms, vitamins A and D may have heretofore unproven, unrecognized, independent and probable synergistic, direct antimycobacterial inhibitory activity.  相似文献   

9.
10.
11.
Vitamin D deficiency and advanced glycation end products (AGEs) are suggested to be involved in the pathogenesis of osteoporosis and sarcopenia. However, the effects of vitamin D and AGEs on myogenesis and the interaction between muscle and bone remains still unclear. We previously showed that osteoglycin (OGN) is secreted from myoblasts and stimulates osteoblastic differentiation, suggesting that it plays important roles in the interaction between muscle and bone. The aim of this study is thus to examine the effects of vitamin D and AGEs on myoblastic differentiation of C2C12 cells and osteoblastic differentiation of osteoblastic MC3T3-E1 cells through OGN expression. 1α,25-dihydroxyvitamin D3 (1,25D) and eldecalcitol, an active vitamin D analog, induced the expression of MyoD, myogenin and OGN, and these effects were abolished by vitamin D receptor (VDR) suppression by siRNA in C2C12 cells. Moreover, conditioned medium from 1,25D-pretreated C2C12 cells stimulated the expression of type 1 collagen and alkaline phosphatase in MC3T3-E1 cells, compared to control medium from 1,25D-untreated C2C12 cells. In contrast, conditioned medium from VDR-suppressed and 1,25D-pretreated C2C12 cells showed no effects. AGE2 and AGE3 suppressed the expression of MyoD, myogenin and OGN in C2C12 cells. Moreover, 1,25D blunted the AGEs’ effects. In conclusion, these findings showed for the first time that active vitamin D plays important roles in myogenesis and muscle-induced osteoblastogenesis through OGN expression. Active vitamin D treatment may rescue the AGEs-induced sarcopenia as well as – suppressed osteoblastic differentiation via OGN expression in myoblasts.  相似文献   

12.
13.
14.
1,25-Dihydroxyvitamin D(3) (vitamin D) and transforming growth factor-beta (TGF-beta) regulate diverse biological processes including cell proliferation and differentiation through modulation of the expression of target genes. Members of the Smad family of proteins function as effectors of TGF-beta signaling pathways whereas the vitamin D receptor (VDR) confers vitamin D signaling. We investigated the molecular mechanisms by which TGF-beta and vitamin D signaling pathways interact in the regulation of the human osteocalcin promoter. Synergistic activation of the osteocalcin gene promoter by TGF-beta and vitamin D was observed in transient transfection experiments. However, in contrast to a previous report by Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science, 283, 1317-1321, synergistic activation was not detectable when the osteocalcin vitamin D response element (VDRE) alone was linked to a heterologous promoter. Inclusion of the Smad binding elements (SBEs) with the VDRE in the heterologous promoter restored synergistic activation. Furthermore, this synergy was dependent on the spacing between VDRE and SBEs. The Smad3-Smad4 heterodimer was found to bind in gel shift assay to two distinct DNA segments of the osteocalcin promoter: -1030 to -989 (SBE3) and -418 to -349 (SBE1). Deletion of SBE1, which is proximal to the VDRE, but not the distal SBE3 in this promoter reporter abolished TGF-beta responsiveness and eliminated synergistic co-activation with vitamin D. Thus the molecular mechanism, whereby Smad3 and VDR mediate cross-talk between the TGF-beta and vitamin D signaling pathways, requires both a VDRE and a SBE located in close proximity to the target promoter.  相似文献   

15.
16.
Vitamin D3 induces autophagy of human myeloid leukemia cells   总被引:1,自引:0,他引:1  
Vitamin D3 causes potent suppression of various cancer cells; however, significant supraphysiological concentrations of this compound are required for antineoplastic effects. Current combinatorial therapies with vitamin D3 are restricted to differentiation effects. It remains uncertain if autophagy is involved in vitamin D3 inhibition on leukemia cells. Here we show that besides triggering differentiation and inhibiting apoptosis, which was previously known, vitamin D3 triggers autophagic death in human myeloid leukemia cells. Inhibiting differentiation does not efficiently diminish vitamin D3 suppression on leukemia cells. Vitamin D3 up-regulates Beclin1, which binds to class III phosphatidylinositol 3-kinase to trigger autophagy. Vitamin D3 phosphorylates Bad in its BH3 domain, resulting in disassociation of the apoptotic Bad-Bcl-xL complex and association of Bcl-xL with Beclin1 and ultimate suppression of apoptotic signaling. Knockdown of Beclin1 eliminates vitamin D3-induced autophagy and inhibits differentiation but activates apoptosis, suggesting that Beclin1 is required for both autophagy and differentiation, and autophagy cooperates with differentiation but excludes apoptosis, in which Beclin1 acts as an interface for these three different cascades. Moreover, additional up-regulation of autophagy, but not apoptosis, dramatically improves vitamin D3 inhibition on leukemia cells. These findings extend our understanding of the action of vitamin D3 in antineoplastic effects and the role of Beclin1 in regulating multiple cellular cascades and suggest a potentially promising strategy with a significantly better antileukemia effect.  相似文献   

17.
18.
Vitamin D was discovered as an anti-rachitic agent, but even at present, there is no direct evidence to support the concept that vitamin D directly stimulates osteoblastic bone formation and mineralization. It appears to be paradoxical, but vitamin D functions in the process of osteoclastic bone resorption. In 1952, Carlsson reported that administration of vitamin D(3) to rats fed a vitamin D-deficient, low calcium diet raised serum calcium levels. Since the diet did not contain appreciable amounts of calcium, the rise in serum calcium was considered to be derived from bone. Since then, this assay has been used as a standard bioassay for vitamin D compounds. Osteoclasts, the cells responsible for bone resorption, develop from hematopoietic cells of the monocyte-macrophage lineage. Several lines of evidence have shown that the active form of vitamin D(3), 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3)] is one of the most potent inducers of receptor activator of NF-κB ligand (RANKL), a key molecule for osteoclastogenesis, in vitro. In fact, 1α,25(OH)(2)D(3) strongly induced osteoclast formation and bone resorption in vitro. Nevertheless, 1α,25(OH)(2)D(3) and its prodrug, Alfacalcidol (1α-hydroxyvitamin D(3)) have been used as therapeutic agents for osteoporosis since 1983, because they increase bone mineral density and reduce the incidence of bone fracture in vivo. Furthermore, a new vitamin D analog, Eldecalcitol [2β-(3-hydroxypropoxy)-1α,25(OH)(2)D(3)], has been approved as a new drug for osteoporosis in Japan in January 2011. Interestingly, these beneficial effects of in vivo administration of vitamin D compounds are caused by the suppression of osteoclastic bone resorption. The present review article describes the mechanism of the discrepancy of vitamin D compounds in osteoclastic bone resorption between in vivo and in vitro.  相似文献   

19.
20.
Ossification of the posterior longitudinal ligament of the spine (OPLL) is the leading cause of myelopathy in Japan and is diagnosed by ectopic bone formation in the paravertebral ligament. OPLL is a systemic high bone mass disease with a strong genetic background. To detect genes relevant to the pathogenesis of OPLL, we performed a cDNA microarray analysis of systematic gene expression profiles during the osteoblastic differentiation of ligament cells from OPLL patients (OPLL cells), patients with a disorder called ossification of yellow ligament (OYL), and non-OPLL controls together with human mesenchymal stem cells (hMSCs) after stimulating them with osteogenic differentiation medium (OS). Twenty-four genes were up-regulated during osteoblastic differentiation in OPLL cells. Zinc finger protein 145 (promyelotic leukemia zinc finger or PLZF) was one of the highly expressed genes during osteoblastic differentiation in all the cells examined. We investigated the roles of PLZF in the regulation of osteoblastic differentiation of hMSCs and C2C12 cells. Small interfering RNA-mediated gene silencing of PLZF resulted in a reduction in the expression of osteoblast-specific genes such as the alkaline phosphatase, collagen 1A1 (Col1a1), Runx2/core-binding factor 1 (Cbfa1), and osteocalcin genes, even in the presence of OS in hMSCs. The expression of PLZF was unaffected by the addition of bone morphogenetic protein 2 (BMP-2), and the expression of BMP-2 was not affected by PLZF in hMSCs. In C2C12 cells, overexpression of PLZF increased the expression of Cbfa1 and Col1a1; on the other hand, the overexpression of CBFA1 did not affect the expression of Plzf. These findings indicate that PLZF plays important roles in early osteoblastic differentiation as an upstream regulator of CBFA1 and thereby might participate in promoting the ossification of spinal ligament cells in OPLL patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号