首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The specific activity of the γ-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717–720). The HPLC method also allowed the incorporation of 32P into the (α + β)-positions of ATP to be determined. 2. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [γ-32P]ATP attained a steady-state value after 1–2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the β-agonist isoprenaline increased this value by 5–10% within 15 min. 3. Under these conditions the steady-state specific activity of [γ-32P]ATP was 30–40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the γ-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. 4. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

2.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

3.
Succinyl-CoA synthetase and the alpha-subunit of pyruvate dehydrogenase are phosphorylated after incubation of mitochondria from brain, heart, and liver with [gamma-32P]ATP. Dichloroacetate, a known specific inhibitor for pyruvate dehydrogenase kinase, inhibits not only the phosphate incorporation into the alpha-subunit of pyruvate dehydrogenase but also the autophosphorylation of succinyl-CoA synthetase. AMP also inhibits the phosphorylation of both proteins. Phosphorylation of the alpha-subunit of pyruvate dehydrogenase in liver mitochondria is significantly lower than in mitochondria from other tissues.  相似文献   

4.
Radioactive phosphate was incorporated from [γ-32P]ATP into a 160 000 dalton protein from preparations of highly purified toad retinal rod outer segment membranes. Maximal incorporation occurred at 1μM ATP, and turnover in the presence of nonradioactive substrate was rapid, showing that the 160 kdalton protein catalyzes ATP hydrolysis. The 160 kdalton intermediate was sensitive to hydroxylamine, suggesting an acyl linkage between the protein and phosphate. Ionic requirements for phosphorylation showed the ATPase is different from other membrane-bound ionic pumps. The phosphorylated intermediate was almost completely suppressed by 20 μM vanadate, and partial suppression occurred at lower concentrations. About one 160 kdalton protein was labelled per 30 000 molecules of rhodopsin. Although [γ-32P]GTP labeled the protein, the ATPase was far more specific for adenine than guanine nucleotides. The specificity for ATP and sensitivity to vanadate of the intermediate suggest a relation to an ATP-dependent structural change which occurs in stacks of outer segment discs (Thacher, S.M.; (1980) Fed. Proc. 39, 2066).  相似文献   

5.
The incorporation of [-32P]ATP into proteins of rat brain polyribosomes was studied in vitro. The effects of cyclic nucleotides, calcium, hemin, ACTH, GTP, and spermine were examined. The incorporation of phosphate into proteins increased with time and phosphatase activity was very low; thus, the extent of phosphorylation was predominantly a reflection of protein kinase activity. Phosphorylation of proteins was not sensitive to Ca2+ in the presence or absence of either calmodulin or phosphatidylserine. Phosphorylation was also unaffected by cyclic nucleotides in the absence of exogenous enzymes. However, addition of a cMAP-dependent protein kinase together with cAMP resulted in a stimulation of the incorporation of phosphate into 4 phosphoproteins (pp70, pp58, pp43, and pp32); phosphorylation of pp32 was completely dependent on the addition of the kinase. ACTH (1–24), (11–24), and spermine inhibited the endogenous phosphorylation of one protein band (pp30). The phosphorylation of this 30 kD band was also selectively increased by hemin (5 M). Higher concentrations of hemin exerted an inhibitory effect on the majority of the phosphoproteins. Protein phosphatase activity was not influenced by ACTH or spermine. The specific inhibition of pp30 phosphorylation by ACTH or spermine is most probably explained by an interaction with a cyclic nucleotide- and Ca2+-independent protein kinase.  相似文献   

6.
Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) and its 8-methylthio derivative stimulate the incorporation of 32P into proteins endogenous to a homogenate of rat caudate nucleus when 4 μM [γ?32P] ATP is usedas substrate. Higher concentrations of ATP reduced the effect of the cyclic nucleotide until at 400 μM no significant increase in protein phosphorylation was seen.Incubation of the homogenate with 400 μM ATP and 100 μM dopamine resulted in an approx. 2-fold increase in cyclic AMP but did not alter caudate protein phosphorylation suggesting that the catecholamine could not stimulate protein phosphorylation under the experimental conditions used in the present study.  相似文献   

7.
Endogenous phosphorylation of platelet membrane proteins.   总被引:1,自引:0,他引:1  
The characteristics of the phosphorylating activity of platelet membranes have been studied. Plasma membranes of human platelets isolated by the glycerol lysis technique were shown to incorporate significant amounts of [32P]phosphate into specific membrane proteins. This activity was only partially cyclic 3′:5′-monophosphate (cyclic AMP)-dependent but had most of the other characteristics of protein kinases derived from other sources. Maximal stimulation of endogenous phosphorylation was obtained at 1 × 10?7, m cyclic AMP and exceeded by approximately 30% the [32P]phosphate incorporation in the absence of this cyclic nucleotide. The platelet membrane protein kinase was able to phosphorylate exogenous proteins, e.g., histone, fibrinogen etc., as well as endogenous membrane proteins. The latter solubilized by sodium dodecyl sulfate and separated by dodecyl sulfate-polyacrylamide gel electrophoresis incorporated [32P]phosphate into three polypeptides of apparent molecular weights 52,000, 31,000, and 20,000. The phosphorylation of the polypeptide of molecular weight 52,000 was cyclic AMP-dependent.  相似文献   

8.
A study was made of the phosphorylation of chromatographically purified histone H1 subfractions from the liver of premetamorphic tadpoles (Ranacatesbeiana). Two H1 subfractions were obtained which differed in terms of net incorporation of [32P]phosphate invivo. Analysis of N-bromosuccinimide cleavage products further revealed that the two subfractions also differed in the relative distribution of [32P]phosphate in N- and C-terminal regions of the molecule. Incorporation of [32P]phosphate into both regions of the molecule occurred virtually exclusively in serine residues.  相似文献   

9.
The uptake of [32P]phosphate by human, gel-filtered blood platelets and its incorporation into cytoplasmic ATP and polyphosphoinositides was studied. In unstimulated platelets, uptake was Na+o-dependent and saturable at approximately 20 nmol/min/10(11) cells with a half-maximal rate at 0.5 mM extracellular phosphate. Upon stimulation with thrombin or collagen, net influx of [32P]Pi was accelerated 5- to 10-fold. With thrombin, [32P]Pi efflux was also increased. After the first 2 min, efflux exceeded influx, resulting in the net release of [32P]Pi from the platelets. Since the stimulus-induced burst in [32P]Pi uptake paralleled the secretory responses, it might be an integral part of stimulus-response coupling in platelets. The stimulus-induced burst in net [32P]Pi uptake led to an enhanced labeling of metabolic ATP, which was already detectable at 5 s after stimulation with thrombin. Concomitantly, the incorporation of [32P]Pi into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was accelerated. The thrombin-induced increase in specific 32P radioactivity of cytoplasmic ATP fully accounted for the simultaneous increase in specific 32P radioactivity of these phosphoinositides. In studying the extent of 32P labeling of phosphorylated compounds in response to a cellular stimulus, it is therefore essential to measure the effect of the stimulus on the specific radioactivity of cytoplasmic ATP.  相似文献   

10.
Summary Incubation of rat liver mitochondria in the presence of either [32P] Pi or 32 y -P] ATP resulted in a phosphorylation of four proteins with Mr 50, 47, 44 and 36 kDa, respectively. The endogenous phosphorylation of these proteins in the presence of [32P] Pi was markedly influenced by the osmolarity of the incubation medium and differentially affected by various effectors of mitochondrial functions, such as Ca2+, oligomycin, FCCP, arsenite and dichloroacetate. In particular, the 36 kDa protein, unlike the other proteins, appears to be phosphorylated also by direct incorporation of [32P], independently of respiratory chain-linked ATP synthesis. The four proteins, located in the mitoplasts, seem to be phosphorylated by diiferent protein kinases, as suggested by the observation that the endogenous phosphorylation of 36 kDa protein resulted selectively increased by addition of exogenous protein kinases, such as casein kinases S and TS. A tentative identification of these phosphorylatable protein is discussed.  相似文献   

11.
The effects of various lipolytic and antilipolytic compounds on the phosphorylation of specific proteins, on lipolysis, and on cyclic AMP levels have been studied in isolated intact fat cells of rats. Norepinephrine (NE), adrenocorticotropic hormone (ACTH), 3-isobutyl-1-methylxanthine (IBMX), and monobutyryl cyclic AMP (MBcAMP) each increased the incorporation of [32P] into three proteins, with apparent molecular weights of approximately 130,000 (protein A), 69,000 (protein B), and 47,000 (protein C), as determined by gel electrophoresis in the presence of sodium dodecyl sulfate (DodSO4?). The concentrations of lipolytic agents necessary to obtain a half-maximal increase in phosphorylation of these proteins were similar to the concentrations necessary to obtain a half-maximal stimulation of lipolysis. Propranolol, a β-adrenergic blocking agent, blocked the effects of NE both on protein phosphorylation and on lipolysis, but did not modify the effects of ACTH, IBMX, or MBcAMP on these parameters. When the NE-induced increase in phosphorylation of proteins B and C was maximal, addition of propranolol resulted in a rapid dephosphorylation of these proteins and a rapid cessation of lipolysis; under the same experimental conditions, propranolol had almost no effect on the dephosphorylation of protein A. Concentrations of insulin that prevented or reversed the actions of NE and ACTH on lipolysis also prevented or reversed the NE- and ACTH-induced increase in [32P] incorporation into proteins B and C. Insulin did not modify the effects of IBMX or MBcAMP either on lipolysis or on [32P] incorporation into proteins B and C. Insulin increased the incorporation of [32P] into a protein which, by several criteria, appeared to be protein A. Under a variety of experimental conditions in which lipolytic and antilipolytic hormones were studied, the rate of lipolysis correlated well with the level of phosphorylation of proteins B and C, but not with the level of cyclic AMP.  相似文献   

12.
There is increasing evidence that phosphorylation of cellular proteins plays a role in the control of events surrounding secretion in neurons and chromaffin cells. In previous studies, we have used thiophosphorylation of cell proteins as a means of fixing cellular phosphorylation reactions in the phosphorylated state. Thiophosphorylation of permeabilized chromaffin cells with adenosine-5′-O-(3-thiotriphosphate) results in irreversible inhibition of secretion. Thiophosphate is incorporated primarily by two cellular proteins of 58 and 47 kDa. Calcium enhanced thiophosphorylation of the 47 kDa protein but not the 54 kDa protein. This pattern of thiophosphorylation differed markedly from that for phosphorylation under similar treatment conditions. The phosphoprotein composition of the cells depended upon the medium calcium and ATP concentration. In the absence of exogenous ATP, fewer phosphoproteins were seen in calcium stimulated cells than in unstimulated cells. Proteins labelled with 32P or 35S migrated to the same position on polyacrylamide gels containing sodium dodecyl sulfate. In the presence of exogenous ATP, 32P incorporation was similar for both control and calcium-stimulated cells and was found primarily in a 64 kDa protein. Incorporation of [32P]phosphate by calcium-stimulated cells was reduced to the same extent by pretreatment of the cells with either adenosine-5′-O-(3-thiotriphosphate) or ATP.The different electrophoretic banding patterns for thiophosphorylation and phosphorylation are likely due to the irreversibility of the thiophosphorylation reaction and reversibility of the phosphorylation reaction. The inability to turn over thiophosphate groups, in association with changes in secretion, may permit identification of those phosphoproteins that are putatively involved in secretion.  相似文献   

13.
Yukiko Tokumitsu  Michio UI 《BBA》1973,292(2):310-324
1. A significant amount of 32Pi is incorporated into ADP fraction if mitochondrial phosphorylation is allowed to proceed solely dependent on the endogenous adenine nucleotides even in the absence of uncouplers or inhibitors of oxidative phosphorylation. This formation of [32P]ADP is accompanied by a significant labelling of the GTP fraction as well as by a decrease in mitochondrial AMP.2. A good correlation, highly significant on a statistical basis, is obtained between the incorporation of 32Pi into ADP on the one hand and the oxidation of [1-14C]glutamate to 14CO2 on the other, under a wide variety of conditions of respiration, suggesting that the substrate-level phosphorylation linked to the oxidation of 2-oxoglutarate leads to the phosphorylation of AMP in rat liver mitochondria.3. Since intramitochondrial GTP is not directly labelled by the [32P]ATP added, it is concluded that neither nucleoside diphosphokinase (ATP:nucleoside diphosphate phosphotransferase, EC 2.7.4.6) nor adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) is functioning in such an EDTA-containing medium as employed in the present study because of lack of the enzymes inside the inner membrane. This not only indicates that ATP never serves as a phosphate donor for the observed phosphorylation of AMP, but also, along with several other lines of evidence, lends strong support to the view that [32P]GTP generated as a result of the substrate-level phosphorylation is a direct precursor of [32P]ADP through the mediation of GTP:AMP phosphotransferase, which has been verified to be located inside the inner membrane by the significant labelling of GTP by [32P]ADP.  相似文献   

14.
We describe a method for studying the phosphorylation of the S6 ribosomal protein in intact cells. The procedure has the advantage of using few cells, little 32Pi, and by using an air-driven centrifuge, many samples can be processed in a short time. Metabolically labeling the ribosomes with [3H]uridine before the experiment provides a measure of ribosome yield. The amount of 32Pi incorporated into proteins other than S6, which cosediment with the ribosomes, increases by the same amount as the specific activity of [32P]ATP increases, when the cells are stimulated by prostaglandin F, insulin, epidermal, or fibroblast growth factor, or serum; whereas the 32Pi incorporated into S6 increases by a factor greater than the increase in the specific activity of [32P]ATP. We show that the phosphate on S6 turns over at least as rapidly as does the phosphate on ATP. This last observation allows us to use a procedure, which we have outlined for determining the absolute amount of phosphate added to S6 due to a stimulus.  相似文献   

15.
Pyridoxal [32P] phosphate was prepared using [γ-32P]ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis.The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

16.
A sensitive method for measuring phosphorylase kinase activity by the incorporation of 32P from [γ-32]ATP into phosphorylase in the presence of other phosphorylation reactions is described. The kinase reaction is carried out in a crude homogenate. After stopping the reaction, a portion of the reaction mixture is withdrawn for assay of phosphorylase conversion and the rest is applied on a 5′-AMP Sepharose column. Phosphorylase in both forms is retained on the column while other phosphorylated proteins and [γ-32P]ATP are washed out. The phosphorylase is then eluted by 10 mm AMP and the radioactivity incorporated is counted.  相似文献   

17.
A rapid method capable of detecting low levels of ribokinase is given. [γ-32P]ATP is converted to ribose 5-[32P]phosphate which is not absorbable onto charcoal. The assay is linear in enzyme concentration to a lower limit of at least 4 × 10?2 mg of enzyme/ml.  相似文献   

18.
The role of protein phosphorylation in the regulation of thyroid function by carbamylcholine was investigated using dog thyroid slices incubated in the presence of [32P]phosphate and two-dimensional electrophoresis. In these intact cells, carbachol increased the phosphorylation of three polypeptides with Mr values of 21 500, 24 000 and 29 000. Maximal [32P]phosphate incorporation occurred within 5 min of addition of carbamylcholine for 10 min increased the phosphorylation of 11 polypeptides whcih were identical to those observed previously after 2 h of hormone action (Lecocq, R., Lamy, F. and Dumont, J.E. (1979) Eur. J. Biochem. 102, 147–152). All three polypeptides whose phosphorylation is increased by carbamylcholine were different from those whose phosphorylation is increased by thyrotropin. Under our experimental conditions, the calcium ionophore A23187 did not stimulate significantly [32P]phosphate incorporation in these three polypeptides. In conclusion, our results show that carbamylcholine and thyrotropin, which have some antagonist and some similar effects on dog thyroid, do not act through the phosphorylation of the same proteins. Although we have, in our previous chapter, established that in a rise in intracellular cyclic AMP could accout for the effect of thyrotropin on protein phosphorylation, the nature of the intracellular mediator of carbamylcholilne action on this parameter is still uncertain.  相似文献   

19.
Phosphorylation of soluble proteins in rat mammary acinar cells was investigated. When phosphorylation proceeded in intact cells, in the presence of [32P]Pi, the major non-casein phosphoproteins, including acetyl-CoA carboxylase, were unresponsive to incubation conditions that caused major increases in the intracellular concentration of cyclic AMP. The overall 32P specific radioactivity (c.p.m./microgram of protein) of acetyl-CoA carboxylase, assessed after affinity purification of the enzyme with avidin-Sepharose, was unchanged by incubation under such conditions. Furthermore, the distribution of 32P among tryptic phosphopeptides of the enzyme, resolved by reversed-phase h.p.l.c., was not altered by cyclic AMP-increasing treatments of the acinar cells. When cytosol fractions were incubated with [gamma-32P]ATP, some phosphoproteins responded to the addition of micromolar concentrations of dibutyryl cyclic AMP or cyclic AMP by undergoing an enhancement of phosphate incorporation. In these experiments in vitro, protein phosphatase activity did not make a major contribution to the net phosphorylation of individual phosphoproteins, and acetyl-CoA carboxylase was not prominent among the phosphoproteins identified after short (less than 1 min) incubations of cytosols with [gamma-32P]ATP. The resistance of protein phosphorylation to variations in the cyclic AMP concentration in intact mammary epithelial cells, demonstrated by this work, is one of several mechanisms that ensure the pleiotropic refractoriness of those cells to agents which normally cause a stimulation of adenylate cyclase activity in hormone-sensitive cells.  相似文献   

20.
A rapid method for the measurement of [γ-32P]ATP specific radioactivity in tissue extracts containing other 32P-labeled compounds is described. The neutralized acid extract is incubated with cyclic AMP-dependent protein kinase, cyclic AMP and casein. The incorporation of 32P into casein from [γ-32P]ATP is measured by perchloric acid precipitation of the protein on filter paper. 32P-Casein formation is linearly related to the specific radioactivity of the [γ-32P]ATP. Separation of ATP from other 32P-labeled compounds is not required for the assay. Application of this method in the evaluation of [γ-32P]ATP specific radioactivity in two rat cardiac muscle preparations exposed to 32Pi is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号