首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

2.
1. The responses of nutrient concentrations, plankton, macrophytes and macrozoobenthos to a reduction in external nutrient loading and to contemporary climatic change were studied in the shallow, moderately flushed Lake Müggelsee (Berlin, Germany). Weekly to biweekly data from 1979 to 2003 were compared with less frequently collected historical data. 2. A reduction of more than 50% in both total phosphorus (TP) and total nitrogen (TN) loading from the hypertrophic (1979–90) to the eutrophic period (1997–2003) was followed by an immediate decline in TN concentrations in the lake. TP concentrations only declined during winter and spring. During summer, phosphorus (P) release from the sediments was favoured by a drastic reduction in nitrate import. Therefore, Müggelsee acted as a net P source for 6 years after the external load reduction despite a mean water retention time of only 0.1–0.16 years. 3. Because of the likely limitation by P in spring and nitrogen (N) in summer, phytoplankton biovolume declined immediately after nutrient loading was reduced. The formerly dominant cyanobacteria (Oscillatoriales) Limnothrix redekei and Planktothrix agardhii disappeared, but the mean biovolume of the N2‐fixing species Aphanizomenon flosaquae remained constant. 4. The abundance of Daphnia spp. in summer decreased by half, while that of cyclopoid copepod species increased. Abundances of benthic macroinvertebrates (mainly chironomids) decreased by about 80%. A resource control of both phytoplankton and zooplankton is indicated by significant positive correlations between nutrient concentrations and phytoplankton biovolume and between phytoplankton and zooplankton biomass. 5. Water transparency in spring increased after nutrient reduction and resulted in re‐colonisation of the lake by Potamogeton pectinatus. However, this process was severely hampered by periphyton shading and grazing by waterfowl and fish. 6. Water temperatures in Müggelsee have increased in winter, early spring and summer since 1979. The earlier development of the phytoplankton spring bloom was associated with shorter periods with ice cover, while direct temperature effects were responsible for the earlier development of the daphnid maximum in spring.  相似文献   

3.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

4.
In a medium-sized pre-alpine lake (North Italy) the cyanobacterium Planktothrix rubescens has strongly dominated the phytoplankton assemblage since 2000, similar to many pre-alpine lakes, despite improvements in water quality. The objective of this study was to determine the factors governing the spatial distribution of P. rubescens, including the major hydrodynamic processes and the influence of long-term reduction in nutrient concentrations during a period of climate warming. We used an intensive field campaign conducted from February 2010 to January 2011, to evaluate distributions of phytoplankton phyla, as well as P. rubescens, using spectrally resolved fluorescence measurements. These data provided highly spatially and temporally resolved phytoplankton population data suitable to calibrate and validate a coupled three-dimensional hydrodynamic (ELCOM) and ecological model (CAEDYM) of the lake ecosystem. The simulations revealed the fundamental role of physiological features of P. rubescens that led to observed vertical patterns of distribution, notably a deep chlorophyll maximum, and a strong influence of lake hydrodynamic processes, particularly during high-discharge inflows in summer stratification. The simulations are used to examine growth-limiting factors that help to explain the increased prevalence of P. rubescens during re-oligotrophication.  相似文献   

5.
6.
The shallow Lake Vrana was studied over a 1-year period, special attention being paid to the phytoplankton. Phytoplankton was investigated monthly with respect to temporal variability of selected environmental factors. The regular annual development observed was in species contribution to total biomass rather than in seasonal changes in species composition. The assemblage was dominated by Cosmarium tenue Arch. and Synedra sp. In winter and in spring the phytoplankton assemblage was dominated by Cosmarium tenue and high contribution of Synedra sp. was observed during the summer and autumn. Results suggest that concentrations of inorganic nitrogen and phosphorus were critical in regulating phytoplankton biomass and species dominance.  相似文献   

7.
The phytoplankton lake community model PROTECH (Phytoplankton RespOnses To Environmental CHange) was applied to the eutrophic lake, Esthwaite Water (United Kingdom). It was validated against monitoring data from 2003 and simulated well the seasonal pattern of total chlorophyll, diatom chlorophyll and Cyanobacteria chlorophyll with respective R2‐values calculated between observed and simulated of 0.68, 0.72 and 0.77 (all P<0.01). This simulation was then rerun through various combinations of factorized changes covering a range of half to double the flushing rate and from ?1 to +4 °C changes in water temperature. Their effect on the phytoplankton was measured as annual, spring, summer and autumn means of the total and species chlorophyll concentrations. In addition, Cyanobacteria mean percentage abundance (%Cb) and maximum percentage abundance (Max %Cb) was recorded, as were the number of days that Cyanobacteria chlorophyll concentration exceed two World Health Organization (WHO) derived risk thresholds (10 and 50 mg m?3). The phytoplankton community was dominated in the year by three of the eight phytoplankton simulated. The vernal bloom of the diatom Asterionella showed little annual or seasonal response to the changing drivers but this was not the case for the two Cyanobacteria that also dominated, Anabaena and Aphanizomenon . These Cyanobacteria showed enhanced abundance, community dominance and increased duration above the highest WHO risk threshold with increasing water temperature and decreasing flushing rate: this effect was greatest in the summer period. However, the response was ultimately controlled by the availability of nutrients, particularly phosphorus and nitrogen, with occasional declines in the latter's concentration helping the dominance of these nitrogen‐fixing phytoplankton.  相似文献   

8.
Temponeras  M.  Kristiansen  J.  Moustaka-Gouni  M. 《Hydrobiologia》2000,424(1-3):109-122
Phytoplankton species composition, seasonal dynamics and spatial distribution in the shallow Lake Doïrani were studied during the growth season of 1996 along with key physical and chemical variables of the water. Weak thermal stratification developed in the lake during the warm period of 1996. The low N:P ratio suggests that nitrogen was the potential limiting nutrient of phytoplankton in the lake. In the phytoplankton of the lake, Chlorophyceae were the most species-rich group followed by Cyanophyceae. The monthly fluctuations of the total phytoplankton biomass presented high levels of summer algal biomass resembling that of other eutrophic lakes. Dinophyceae was the group most represented in the phytoplankton followed by Cyanophyceae. Diatomophyceae dominated in spring and autumn. Nanoplankton comprised around 90% of the total biomass in early spring and less than 10% in summer. The seasonal dynamics of phytoplankton generally followed the typical pattern outlined for other eutrophic lakes. R-species (small diatoms), dominant in the early phase of succession, were replaced by S-species (Microcystis, Anabaena, Ceratium) in summer. With cooling of the water in September, the biomass of diatoms (R-species) increased. The summer algal maxima consisted of a combination of H and M species associations (sensu Reynolds). Phytoplankton development in 1996 was subject to the combined effect of the thermal regime, the small depth of mixing and the increased sediment-water interactions in the lake, which caused changes in the underwater light conditions and nutrient concentrations.  相似文献   

9.
1. Through analyses of a 34‐year record of phytoplankton, zooplankton and physicochemical parameters from Lake Kinneret, Israel, we show that distinct and persistent phytoplankton assemblage states occurred from winter to summer. 2. The most obvious characteristic of these states was the presence or absence of a spring bloom of the dinoflagellate, Peridinium gatunense. 3. Analyses of the data within the framework of the alternative states model revealed a possible complex triggering mechanism, and system hysteresis. 4. A change in zooplankton biomass and body size coincident with changes in predation pressure associated with the collapse of the Kinneret Bleak, Acanthobrama terraesanctae, fishery appeared to be the ‘slow changing’ variable in the context of the alternative states model. Alternative phytoplankton states were only possible after this variable crossed a threshold in 1993–94, following the collapse of the fishery. 5. When alternative states were possible, some physicochemical parameters and the structure of the zooplankton assemblage appeared to control which phytoplankton state emerged in a given year. In years without a P. gatunense bloom, important physicochemical parameters in winter included low NO3 loading, high water temperature, high water level, a deeper thermocline, low transparency, high concentrations of NO3 and Cl in the epilimnion, and low concentration of epilimnetic total phosphorus. In addition, the cladoceran Chydorus sphaericus and adults of the copepod Mesocyclops ogunnus were observed in winter in years without a bloom. 6. Zooplankton biomass and body size of some taxa have recovered since the 1993–94 collapse of the fishery, yet incidence of both phytoplankton states in Lake Kinneret was still possible. Within the framework of the alternative states model, this suggests that the slow changing variable threshold where alternative states became possible is different from the threshold where alternative states will no longer be possible. In other words, the system is characterised by a hysteresis.  相似文献   

10.
Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon, were examined during time periods between 1984 and 2000. The objectives of the study were (1) to investigate spatial and temporal patterns in species composition, chlorophyll concentration, and primary productivity relative to seasonal patterns of water circulation; (2) to explore relationships between water column chemistry and the taxonomic composition of the phytoplankton; and (3) to determine effects of primary and secondary consumers on the phytoplankton assemblage. An analysis of 690 samples obtained on 50 sampling dates from 14 depths in the water column found a total of 163 phytoplankton taxa, 134 of which were identified to genus and 101 were identified to the species or variety level of classification. Dominant species by density or biovolume included Nitzschia gracilis, Stephanodiscus hantzschii, Ankistrodesmus spiralis, Mougeotia parvula, Dinobryon sertularia, Tribonema affine, Aphanocapsa delicatissima, Synechocystis sp., Gymnodinium inversum, and Peridinium inconspicuum. When the lake was thermally stratified in late summer, some of these species exhibited a stratified vertical distribution in the water column. A cluster analysis of these data also revealed a vertical stratification of the flora from the middle of the summer through the early fall. Multivariate test statistics indicated that there was a significant relationship between the species composition of the phytoplankton and a corresponding set of chemical variables measured for samples from the water column. In this case, concentrations of total phosphorus, ammonia, total Kjeldahl nitrogen, and alkalinity were associated with interannual changes in the flora; whereas pH and concentrations of dissolved oxygen, orthophosphate, nitrate, and silicon were more closely related to spatial variation and thermal stratification. The maximum chlorophyll concentration when the lake was thermally stratified in August and September was usually between depths of 100 m and 120 m. In comparison, the depth of maximum primary production ranged from 60 m to 80 m at this time of year. Regression analysis detected a weak negative relationship between chlorophyll concentration and Secchi disk depth, a measure of lake transparency. However, interannual changes in chlorophyll concentration and the species composition of the phytoplankton could not be explained by the removal of the septic field near Rim Village or by patterns of upwelling from the deep lake. An alternative trophic hypothesis proposes that the productivity of Crater Lake is controlled primarily by long-term patterns of climatic change that regulate the supply of allochthonous nutrients.  相似文献   

11.

Responses of phytoplankton biomass were monitored in pelagic enclosures subjected to manipulations with nutrients (+N/P), planktivore roach (Rutilus rutilus) and large grazers (Daphnia) in 18 bags during spring, summer and autumn in mesotrophic Lake Gjersjøen. In general, the seasonal effects on phytoplankton biomass were more marked than the effects of biomanipulation. Primary top-down effects of fish on zooplankton were conspicuous in all bags, whereas control of phytoplankton growth by grazing was observed only in the nutrient-limited summer situation. The effect of nutrient additions was pronounced in summer, less in spring and autumn; additions of fish gave the most pronounced effect in spring. The phytoplankton/zooplankton biomass ratio remained high (10–100) in bags with fish, with the highest ratios in combination with fertilization. The ratio decreased in bags without fish to<2 in most bags, but a real grazing control was only observed in bags with addition ofDaphnia. No direct grazing effects could be observed on the absolute or relative biomass of cyanobacteria (mainlyOscillatoria agardhii). The share of cyanobacteria in total phytoplankton biomass was lowest in summer (7–26%), higher in spring (39–63%) and more than 90% in the autumn experiment. The development of the cyanobacterial biomass was rather synchronous in all bags in all the three experiments. A high biomass ofDaphnia gave no increase in the pool of dissolved nutrients in spring, a slight increase in summer and a pronounced increase in autumn. While a strong decrease in the P/C-cell quota of the phytoplankton was observed from spring to autumn, no effect of grazing or nutrient release could be related to this P/C-status. The experiments indicate that such systems, with high and stable densities of inedible cyanobacteria, are rather insensitive to short-term (3–4 weeks) biomanipulation efforts. This is supported by observations on the long-term development of the lake.

  相似文献   

12.
Excessive nutrient loads resulted in cascading trophic effects and ecosystem responses. Aims of this study were to determine if the thresholds in nutrient gradient related to phytoplankton community composition could be identified in eutrophic lake, and further to analyze the change of phytoplankton assemblage along the nutrient concentration based on Threshold Indicator Taxa ANalysis (TITAN). The results presented the significant community thresholds estimate for negative taxa declining at 1.650 mg/L TN and 131.5 μg/L TP, as well as simultaneously increasing for positive taxa at 1.665 mg/L TN and 151.5 μg/L TP along nutrient enrichment gradient. However, there was unremarkable change point determined for TN:TP ratios in Lake Dianchi. Elevated TN and TP altered the phytoplankton assemblage, even may induce the fade of algal blooms across the threshold in the hypertrophic lake. The findings could provide implications for deeply deciphering abrupt transitions for phytoplankton assemblage and developing nutrient tactics to protect the lake ecosystems.  相似文献   

13.
We undertook a study in Lake Taihu, China, from 2005 to 2009 including a total of 639 samples to determine: (i) the seasonal dynamics and spatial distribution of the chemical oxygen demand (COD) and (ii) the relationships between the COD concentration and the biochemical oxygen demand (BOD), phytoplankton pigment, total dissolved nitrogen (TDN), and total dissolved phosphorus (TDP) concentrations, as well as the chromophoric dissolved organic matter (CDOM) absorption coefficient. There were significant spatial differences in the COD concentration, which gradually decreased from Zhushan Bay in the northwest, to the north, the lake center, and the southeast of the lake. The COD concentration was significantly higher at near-shore sites than that at open water sites. The mean COD concentrations were significantly higher in the spring and summer than in the winter and autumn. The lowest annual mean COD concentration appeared in 2009, which could be attributed to improvements in water quality management and high rainfall. The COD concentrations in all four seasons were strongly correlated with phytoplankton pigment, suggesting that extracellular release of COD from phytoplankton was an important COD source. The correlation coefficients between the COD and phytoplankton pigment concentrations were higher in the spring, summer, and autumn than in the winter, showing a more important contribution of phytoplankton degradation to COD in the algal bloom season than in the non-algal bloom season. These new data on the temporal and spatial characteristics of the COD in Lake Taihu will be crucial for developing future strategies for water quality management.  相似文献   

14.
Variations in chlorophyll a concentration and in qualitative and quantitative counts of Nile phytoplankton were followed at Assiut from September 1980 to September 1982. Chlorophyll a concentrations usually correlated well with phytoplankton density. The total phytoplankton exhibited higher counts in spring and summer than in autumn and winter. While diatoms exhibited the highest counts, green algae contributed more genera to the phytoplankton community.  相似文献   

15.
Dokulil  M. T.  Padisák  J. 《Hydrobiologia》1994,(1):125-137
Data on phytoplankton biomass and on nutrient concentrations from Neusiedler See (mean depth 1.3 m) covering more than two decades are presented. The lake underwent strong eutrophication during this period. The response of annual average phytoplankton biomass and chlorophyll-a to the increase of phosphorus concentration from 10 to > 100 µg l-1 was moderate (7-fold increase). This is caused by light limitation of the system because of the high inorganic turbidity of the lake. Analyses of the spring, summer and autumn seasons at the generic and higher taxonomic levels show significant changes in composition of the phytoplankton community. Diatoms were more important during the pre-eutrophication phase while Chlorophyceae became most prominent during the peak of the eutrophication process. Blue-green algae, including Microcystis, became more apparent after this period. The abundance of some groups or genera, e.g. Euglena, was linked to the decline and re-appearance of submerged macrophytes in the lake. Abiotic and biotic interactions as causes for the observed changes are discussed.  相似文献   

16.
Lars Leonardson 《Oecologia》1984,63(3):398-404
Summary Phytoplankton net carbon uptake and nitrogen fixation were studied in two shallow, eutrophic lakes in South Sweden. Ranges of diurnal net carbon uptake were estimated by subtracting 24-h respiration rates corresponding to 5–20% of P max, respectively, from daytime carbon uptake values. total nitrogen requirement of the phytoplankton assemblage was determined from the diurnal net carbon uptake, assuming a phytoplankton C:N ratio of 9.5:1. Nitrogen supplied by nitrogen fixation only occasionally corresponded to the demands of the total phytoplankton assemblage. When heterocystous algae made up a substantial proportion (10%) of the total phytoplankton biomass, nitrogen fixation could meet the requirements of heterocystous blue-green algae on c. 50% of the sampling occasions. Nitrogen deficiencies in heterocystous algae were most probably balanced by the simultaneous or sequential assimilation of dissolved inorganic nitrogen. It was concluded that uptake of ammonium or nitrate, regenerated from lake seston and sediment, is the main process by which growth of phytoplankton is maintained during summer in the lake ecosystems studied.  相似文献   

17.
We hypothesised that increasing winter affluence and summer temperatures, anticipated in southern Europe with climate change, will deteriorate the ecological status of lakes, especially in those with shorter retention time. We tested these hypotheses analysing weekly phytoplankton and chemistry data collected over 2 years of contrasting weather from two adjacent stratified lakes in North Italy, differing from each other by trophic state and water retention time. Dissolved oxygen concentrations were higher in colder hypolimnia of both lakes in the second year following the cold winter, despite the second summer was warmer and the lakes more strongly stratified. Higher loading during the rainy winter and spring increased nutrient (N, P, Si) concentrations, and a phytoplankton based trophic state index, whilst the N/P ratio decreased in both lakes. The weakened Si limitation in the second year enabled an increase of diatom biovolumes in spring in both lakes. Chlorophyll a concentration increased in the oligo-mesotrophic lake, but dropped markedly in the eutrophic lake where the series of commonly occurring cyanobacteria blooms was interrupted. The projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients rather than to the retention time, and is more pronounced in lakes with lower trophy.  相似文献   

18.
Phytoplankton dynamics in Lake Müggelsee, a eutrophic and polymictic lake in Berlin, and in the inflowing lowland River Spree have been comprehensively investigated during the last two decades. Zooplankton dynamics, nutrient supply, light climate, duration of ice cover and of summer stratification have also been regularly measured to help to explain phytoplankton development. The first period (1978–1990) was characterised by high nutrient loads and dominance of cyanobacteria from spring to autumn. Since then, loads of phosphorus and nitrogen have been lowered by 40–50%. Oscillatoria-like cyanobacteria (Limnothrix redekei, Planktothrix agardhii) were favoured under hypertrophic conditions in both the polymictic lake and the river, but they have disappeared nearly completely after nutrient reduction. Development of these species depended on meteorological conditions and nutrient supply in spring rather than on seasonal averages of nutrient concentrations. Diatoms have became dominant and chlorophytes have increased their share of the biomass since the nutrient load was reduced. Species com- position changed even within the algal groups. Retention time of water and duration of thermal stratification of the water column modified phytoplankton structure. Mobile algae like Microcystisor Ceratium occurred in the lake during stratification periods. Otherwise, species composition in the shallow, polymictic lake was very similar to that in the inflowing lowland river. Species with high starting biomass, fed by high riverine import, resting stages or perennation were selected in this flushed system.  相似文献   

19.
During summer stratification,Metallogenium personatun was found exclusively in the hypolimnion of Lake Washington where the oxygen tension was below 8 ppm. Numbers of the organism decreased in the lake immediately following turnover in October. Significant concentrations ofMetallogenium microcolonies did not recur until spring, after the lake had stratified. During stratification the distribution of particulate manganese closely followed the distribution ofMetallogenium. EDAX analysis, confirmed by electron microprobe analyses of the encrustation, showed that the primary component was manganese. Iron and some trace elements were also precipitated on the organism but to a lesser degree. In addition, phosphate, the primary substance limiting phytoplankton growth in Lake Washington, was found in the encrustation, indicatingMetallogenium maybe important in limiting algal blooms in the lake. Attempts to growMetallogenium in the laboratory were unsuccessful. This inability, combined with the negative results of thin-sectioning and acridine orange staining ofMetallogenium microcolonies, suggests that the microcolonial structures seen in Lake Washington are not a living form of an organism.  相似文献   

20.
Whole-lake food-web manipulation was carried out in the hypertrophic Lake Zwemlust (The Netherlands), with the aim of studying the effects on the lake's trophic status and to gain an insight into complex interactions among lake communities. Before manipulation this small (1.5 ha) and shallow (1.5 m) lake was characterized byMicrocystis blooms in summer and high chlorophyll-a concentrations were common (ca. 250 μg 1−1). In March 1987 the planktivorous and benthivorous fish species in the lake were completely removed (ca. 1000 kg ha−1), a new simple fish community (pike and rudd) was introduced and artificial refuges were created. The effects of this manipulation on the light climate, nutrient concentrations, phytoplankton, zooplankton, fish, macrophytes, and macrofauna were monitored during 1987, 1988 and 1989. Community interactions were investigated in phytoplankton bioassays and zooplankton grazing experiments. After the manipulation, despite the still high P and N loads to the lake (ca. 2.2 g P m−2 y−1 andca. 5.3 g N m−2 y−1), the phytoplankton density was low (Chl-a<5μg l−1), due to control by large-sized zooplankton in spring and N-limitation in summer and autumn. A marked increase in the abundance of macrophytes and filamentous green algae in 1988 and 1989, as well as N loss due to denitrification, contributed to the N limitation of the phytoplankton. Before manipulation no submerged macro-vegetation was present but in 1988, the second year after manipulation, about 50% of the lake bottom was covered by macrophytes increasing to 80% in 1989. This led to substantial accumulation of both N and P, namely 76% and 73% respectively of the total nutrients in the lake in particulate matter. Undesirable features of the increase in macrophytes were: 1) direct nuisance to swimmers; and, 2) the large scale development of snails, especiallyL. peregra, which may harbour the parasite causing ‘swimmers' itch’. But harvesting of only about 3% of the total macrophyte biomass from the swimmers' area, twice a year, reduced the nuisance for swimmers without adversely affecting the water clarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号