首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lateral segregation of anionic phospholipids phosphatidic acid (PA), phosphatidylinositol (PI), and phosphatidylserine (PS) was detected after addition of cytochrome P450 2B1 (CYP2B1). The tendency of lipid clustering was highly dependent on the type of anionic phospholipids examined. PA was the most highly clustered while PI and PS clustered to a lesser degree. Moreover, liposomes containing anionic phospholipids form anionic phospholipid-rich microdomains in the presence of CYP2B1. Anionic phospholipids (mostly notably PA) also increased the ability of CYP2B1 to bind to lipid monolayers. In addition to the ability of CYP2B1 to modulate the physical properties of the membrane, the membrane itself can have reciprocal effects on the activity and conformation of CYP2B1. The catalytic activity of CYP2B1 increased as a function of anionic phospholipid concentration and in the presence of 10 mol% PA, the activity increased by 85%. These results suggest a bi-directional coupling between the CYP2B1 and anionic phospholipids.  相似文献   

2.
We investigated the interaction of human P450 1B1 (CYP1B1) with various phospholipid bilayers using the N-terminally deleted (Δ2-4)CYP1B1 and (Δ2-26)CYP1B1 enzymes. Among anionic phospholipids, phosphatidic acid (PA) and cardiolipin specifically increased the catalytic activities, membrane binding affinities, and thermal stabilities of both CYP1B1 proteins when phosphatidylcholine matrix was gradually replaced with these anionic phospholipids. PA- or cardiolipin-dependent changes of CYP1B1 conformation were revealed by altered Trp fluorescence and CD spectra. However, both PA and cardiolipin exerted more significant effects with the (Δ2-4)CYP1B1 than the (Δ2-26)CYP1B1 implying the functional importance of N-terminal region for the interaction with the phospholipid membranes. In contrast, other anionic phospholipids such as phosphatidylserine and the neutral phospholipid phosphatidylethanolamine had no apparent effects on the catalytic activity or conformation of CYP1B1. These data suggest that the chemical and physical properties of membranes influenced by PA or cardiolipin composition are critical for the functional roles of CYP1B1.  相似文献   

3.
The investigation focuses on the phospholipid composition of the sarcolemma of cultured neonatal rat heart cells and on the distribution of the phospholipid classes between the two monolayers of the sarcolemma. The plasma membranes are isolated by 'gas-dissection' technique and 38% of total cellular phospholipid is present in the sarcolemma with the composition: phosphatidylethanolamine (PE) 24.9%, phosphatidylcholine (PC) 52.0%, phosphatidylserine/phosphatidylinositol (PS/PI) 7.2%, sphingomyelin 13.5%. The cholesterol/phospholipid ratio of the sarcolemma is 0.5. The distribution of the phospholipids between inner and outer monolayer is defined with the use of two phospholipases A2, sphingomyelinase C or trinitrobenzene sulfonic acid as lipid membrane probes in whole cells. The probes have access to the entire sarcolemmal surface and do not produce detectable cell lysis. The phospholipid classes are asymmetrically distributed: (1) the negatively charged phospholipids, PS/PI are located exclusively in the inner or cytoplasmic leaflet; (2) 75% of PE is in the inner leaflet; (3) 93% of sphingomyelin is in the outer leaflet; (4) 43% of PC is in the outer leaflet. The predominance of PS/PI and PE at the cytoplasmic sarcolemmal surface is discussed with respect to phospholipid-ionic binding relations between phospholipids and exchange and transport of ions, and the response of the cardiac cell on ischemia-reperfusion.  相似文献   

4.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

5.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

6.
The interaction of rat brain cytidylate cyclase with some phospholipids such as L-alpha-phosphatidylcholine (PC), L-alpha-phosphatidylserine (PS), L-alpha-phosphatidylethanolamine (PE) and L-alpha-phosphatidic acid (PA) was studied. Cytidylate cyclase activity of Triton X-100 - solubilized fraction was inhibited by PS, PE and PA, but not with PC. The addition of PC to the incubation mixture containing PS, PE or PA dose - dependently reversed the inhibition of enzyme activity by these phospholipids. Phospholipids showed similar effect on the intact membrane - bound enzyme. PC could reactivate the enzyme which was inactivated by deoxycholate treatment, suggesting that PC may be an important factor to reconstitute an active conformation of the enzyme. These findings indicate that cytidylate cyclase could be regulated by phospholipids constituting its microenvironment of the membrane.  相似文献   

7.
Biological membranes exhibit an asymmetric distribution of phospholipids. Phosphatidylserine (PS) is an acidic phospholipid that is found almost entirely on the interior of the cell where it is important for interaction with many cellular components. A less well understood phenomenon is the asymmetry of the neutral phospholipids, where phosphatidylcholine (PC) is located primarily on exterior membranes while phosphatidylethanolamine (PE) is located primarily on interior membranes. The effect of these neutral phospholipids on protein-phospholipid associations was examined using four cytoplasmic proteins that bind to membranes in a calcium-dependent manner. With membranes containing PS at a charge density characteristic of cytosolic membranes, protein kinase C and three other proteins with molecular masses of 64, 32, and 22 kDa all showed great selectively for membranes containing PE rather than PC as the neutral phospholipid; the calcium requirements for membrane-protein association of the 64- and 32-kDa proteins were about 10-fold lower with membranes containing PE; binding of the 22-kDa protein to membranes required the presence of PE and could not even be detected with membranes containing PC. Variation of the PS/PE ratio showed that membranes containing about 20% PS/60% PE provided optimum conditions for binding and were as effective as membranes composed of 100% PS. Thus, PE, as a phospholipid matrix, eliminated the need for membranes with high charge density and/or reduced the calcium concentrations needed for protein-membrane association. A surprising result was that PKC and the 64- and 32-kDa proteins were capable of binding to neutral membranes composed entirely of PE/PC or PC only. The different phospholipid headgroups altered only the calcium required for membrane-protein association. For example, calcium concentrations at the midpoint for association of the 64-kDa protein with membranes containing PS, PE/PC, or PC occurred at 6, 100, and 20,000 microM, respectively. Thus, biological probes detected major differences in the surface properties of membranes containing PE versus PC, despite the fact that both of these neutral phospholipids are often thought to provide "inert" matrices for the acidic phospholipids. The selectivity for membranes containing PE could be a general phenomenon that is applicable to many cytoplasmic proteins. The present study suggested that the strategic location of PE on the interior of the membranes may be necessary to allow some membrane-protein associations to occur at physiological levels of calcium and PS.  相似文献   

8.
Mature human erythrocytes were tested for their ability to synthetize membrane phospholipids from simple precursors: [32P]-orthophosphate (32Pi), [U-14C] glycerol, [U-14C] glucose, [U-14C] serine, and [U-14C] choline. The incorporation of these labels into phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), lysophosphatidylcholine (lyso-PC), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) was measured. All the phospholipids tested incorporated 32Pi, glycerol, and glucose in a time dependent manner. According to the rate of 32Pi incorporation, three groups of phospholipids could be distinguished: 1) PA, PIP2, PIP, lyso-PC; 2) PI and PS; 3) PC and PE, which incorporated 5 x 10(3), 40, and 6 nmol 32Pi/mmol phospholipid per 1 h, respectively. Moreover, [U-14C] serine and [U14C] choline were found to incorporate into phospholipids, and PS-decarboxylase activity could be measured. The possibility that the observed incorporation was due to contamination with bacteria or other blood cells could be ruled out. Our results bring evidence for de novo phospholipid synthesis of human red blood cells.  相似文献   

9.
New reagents for phosphatidylserine recognition and detection of apoptosis   总被引:5,自引:0,他引:5  
The phospholipid bilayer surrounding animal cells is made up of four principle phospholipid components, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and sphingomyelin (SM). These four phospholipids are distributed between the two monolayers of the membrane in an asymmetrical fashion, with PC and SM largely populating the extracellular leaflet and PE and PS restricted primarily to the inner leaflet. Breakdown in this transmembrane phospholipid asymmetry is a hallmark of the early to middle stages of apoptosis. The consequent appearance of PS on the extracellular membrane leaflet is commonly monitored using dye-labeled Annexin V, a 36 kDa, Ca2+-dependent PS binding protein. Substitutes for Annexin V are described, including small molecules, nanoparticles, cationic liposomes, and other proteins that can recognize PS in a membrane surface. Particular attention is given to the use of these reagents for detecting apoptosis.  相似文献   

10.
Although some of the membrane glycoproteins that serve as activators or regulators of C activation have been identified, the influence of membrane lipids has not been studied extensively. A model of alternative C pathway activation was established using liposomes composed of cholesterol and synthetic phospholipids. Liposomes containing phosphatidylcholine (PC) as the sole phospholipid did not activate C as measured by C3 binding after incubation in normal human serum containing 2.5 mM MgCl2 and 10 mM EGTA. When phosphatidylethanolamine (PE) was included as 20% or more of the phospholipid, C3 binding was observed. C3 binding to liposomes was inhibited by salicylhydroxamic acid indicating binding through the C3 thioester bond. The phospholipid composition did not influence C3 binding to liposomes in an unregulated system of C3, B, D, and P indicating equivalent C3b binding sites on activating and nonactivating liposomes. When the regulatory proteins H and I were added to the other components, liposomes containing PE bound three times more C3 than PC liposomes suggesting that the phospholipid affects C3 regulation. This was tested directly in a radiolabeled H binding assay. In the presence of equal amounts of C3b, PC liposomes showed a greater number of high affinity H binding sites than PE liposomes. Using different PE derivatives, C activation could be directly related to the phospholipid polar head group. Liposomes containing PE, trinitrophenyl-PE or monomethyl-PE did activate the alternative C pathway, whereas those containing dimethyl-PE, PC, or phosphatidylserine did not. These studies provide evidence that primary and secondary amino groups on lipid membranes can decrease the interaction between H and C3b and provide sites for alternative pathway activation.  相似文献   

11.
Human hepatic cytochrome P450 3A4 (CYP3A4) was expressed in yeast Saccharomyces cerevisiae. While the expression level was high as compared with other human hepatic cytochrome P450s, CYP3A4 showed almost no catalytic activity toward testosterone. Coexpression of CYP3A4 with yeast NADPH-P450 reductase did not give a full activity. Low monooxygenase activity of CYP3A4 was attributed to the insufficient reduction of heme iron of CYP3A4 by NADPH-P450 reductase. To enhance the efficiency of electron transfer from NADPH-P450 reductase to CYP3A4, a fused enzyme was constructed between CYP3A4 and yeast NADPH-P450 reductase. The rapid reduction of the heme iron of the fused enzyme by NADPH was observed. The fused enzyme showed a high testosterone 6beta-hydroxylation activity with a sigmoidal velocity saturation curve. However, the coupling efficiency between NADPH utilization and testosterone 6beta-hydroxylation was only 10%. Finally, coexpression of the fused enzyme and human cytochrome b5 was examined. A significant decrease in the Km value and a remarkable increase in the coupling efficiency were observed. Substrate-induced spectra revealed that the dissociation constant of the fused enzyme for testosterone significantly decreased with coexpression of human cytochrome b5. These results strongly suggest that human cytochrome b5 directly interacts with the CYP3A4 domain of the fused enzyme and modifies the tertiary structure of substrate binding pocket, resulting in tight binding of the substrate and high coupling efficiency.  相似文献   

12.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the β-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

13.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the beta-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

14.
F Ghomashchi  B Z Yu  O Berg  M K Jain  M H Gelb 《Biochemistry》1991,30(29):7318-7329
The binding equilibrium of phospholipase A2 (PLA2) to the substrate interface influences many aspects of the overall kinetics of interfacial catalysis by this enzyme. For example, the interpretation of kinetic data on substrate specificity was difficult when there was a significant kinetic contribution from the interfacial binding step to the steady-state catalytic turnover. This problem was commonly encountered with vesicles of zwitterionic phospholipids, where the binding of PLA2 to the interface was relatively poor. The action of PLA2 on phosphatidylcholine (PC) vesicles containing a small amount of anionic phospholipid, such as phosphatidic acid (PA), was studied. It was shown that the hydrolysis of these mixed lipid vesicles occurs in the scooting mode in which the enzyme remains tightly bound to the interface and only the substrate molecules present on the outer monolayer of the target vesicle became hydrolyzed Thus the phenomenon of scooting mode hydrolysis was not restricted to the action of PLA2 on vesicles of pure anionic phospholipids, but it was also observed with vesicles of zwitterionic lipids as long as a critical amount of anionic compound was present. Under such conditions, the initial rate of hydrolysis of PC in the mixed PC/PA vesicles was enhanced more than 50-fold. Binding studies of PLA2 to vesicles and kinetic studies in the scooting mode demonstrated that the enhancement of PC hydrolysis in the PC/PA covesicles was due to the much higher affinity of the enzyme toward covesicles compared to vesicles of pure PC phospholipids. A novel and technically simple protocol for accurate determination of the substrate specificity of PLA2 at the interface was also developed by using a double-radiolabel approach. Here, the action of PLA2 in the scooting mode was studied on vesicles of the anionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphomethanol that contained small amounts of 3H- and 14C-labeled phospholipids. From an analysis of the 3H and 14C radioactivity in the released fatty acid products, the ratio of substrate specificity constants (kcat/KMS) was obtained for any pair of radiolabeled substrates. These studies showed that the PLA2s from pig pancreas and Naja naja naja venom did not discriminate between phosphatidylcholine and phosphatidylethanolamine phospholipids or between phospholipids with saturated versus unsaturated acyl chains and that the pig enzyme had a slight preference for anionic phospholipids (2-3-fold). The described protocol provided an accurate measure of the substrate specificity of PLA2 without complications arising from the differences in binding affinities of the enzyme to vesicles composed of pure phospholipids.  相似文献   

15.
Powl AM  East JM  Lee AG 《Biochemistry》2005,44(15):5873-5883
We have introduced single Trp residues into the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and used fluorescence quenching by brominated phospholipids to detect the presence of a binding site of high affinity for anionic phospholipids. A cluster of three positively charged residues, Arg-98, Lys-99, and Lys-100, is located on the cytoplasmic side of MscL, in a position where they could interact with the headgroup of an anionic phospholipid. Single mutations of these charged residues in the Trp-containing mutant F80W results in a decreased affinity for phosphatidic acid. Single mutations of the charged residues also result in a significant shift in the fluorescence emission spectrum in dioleoylphosphatidylcholine [di(C18:1)PC] but smaller shifts in dioleoylphosphatidic acid [di(C18:1)PA], suggesting that single mutations result in a conformational change for the protein that is reversed by interaction with anionic phospholipids. This is consistent with the observation that single mutations of the charged residues do not result in a gain of function phenotype. In contrast, simultaneous mutation of all three charged residues results in a gain of function phenotype, and a shift in fluorescence emission spectrum in di(C18:1)PC not reversed in di(C18:1)PA. The gain of function mutant F80W:V21K also shows a shifted fluorescence emission spectrum in both di(C18:1)PC and di(C18:1)PA and binds di(C18:1)PC and di(C18:1)PA with equal affinity, suggesting that the conformational change caused by the V21K mutation results in a breakup of the cluster of three positive charges. Experiments with the Trp mutants L69W and Y87W allow us to measure lipid binding constants on the periplasmic and cytoplasmic sides of the membrane, respectively. On both sides of the membrane the affinity for di(C18:1)PC is equal to that for dioleoylphosphatidylethanolamine. On the periplasmic side of the membrane, there is no selectivity for anionic phospholipids. In contrast, quenching data for Y87W provides evidence for the existence of two lipid binding sites on the cytoplasmic side of the membrane close to the Trp residue at position 87, with binding to one of these sites showing a marked preference for anionic lipid over zwitterionic lipid, presumably involving the charged cluster Arg-98, Lys-99, and Lys-100.  相似文献   

16.
Using liposomes composed of either brain phosphatidylcholine (PC), or binary mixtures of PC and phosphatidylserine (PS), galactolipids (GL), phosphatidylinositol (PI), cardiolipin (CL), phosphatidic acid (PA), or phosphatidylethanolamine (PE), we investigated the effects of graded amounts of boric acid (B, 0.5-1000 microM) on the following membrane physical properties: (a) surface potential, (b) lipid rearrangement through lateral phase separation, (c) fluidity, and (d) hydration. Incubation of the different populations of vesicles with B was associated with a small, but statistically significant, increase in membrane surface potential in PC, PC:PS, PC:GL, PC:PI, PC:PA, and PC:PE liposomes. B-induced lipid lateral rearrangement through lateral phase separation in PC, PC:PA, and PC:PE liposomes; but had no effects on PC:PS, PC:GL, and PC:PI liposomes. In PC liposomes B affected membrane fluidity at the water-lipid interface without affecting the hydrophobic core of the bilayer. In all the other binary liposomes studied, B increased membrane fluidity in both, the hydrophobic portion of the membrane and in the anionic domains. The above was associated with a decrease in the fluidity of the cationic domains. B (10-1000 microM) decreased membrane hydration regardless the composition of the liposomes. The obtained results demonstrate the ability of B to interact with membranes, and induce changes in membrane physical properties. Importantly, the extent of B-membrane interactions and the consequent effects were dependent on the nature of the lipid molecule; as such, B had greater affinity with lipids containing polyhydroxylated moieties such as GL and PI. These differential interactions may result in different B-induced modulations of membrane-associated processes in cells.  相似文献   

17.
Petan T  Krizaj I  Gelb MH  Pungercar J 《Biochemistry》2005,44(37):12535-12545
The enzymatic activity of ammodytoxins (Atxs), secreted phospholipases A(2) (sPLA(2)s) in snake venom, is essential for expression of their presynaptic neurotoxicity, but its exact role in the process is unknown. We have analyzed in detail the enzymatic properties of Atxs, their mutants, and homologues. The apparent rates of phospholipid hydrolysis by the sPLA(2)s tested vary by up to 4 orders of magnitude, and all enzymes display a strong preference for vesicles containing anionic phospholipids, phosphatidylglycerol or phosphatidylserine (PS), over those containing zwitterionic phosphatidylcholine (PC). Nevertheless, Atxs are quite efficient in hydrolyzing pure PC vesicles as well as PC-rich plasma membranes of intact HEK293 cells. The presence of anionic phospholipids in PC vesicles dramatically increases the interfacial binding affinity and catalytic activity of Atxs, but not of their nontoxic homologue ammodytin I(2), that displays unusually low binding affinity and enzymatic activity on PS-containing vesicles and HEK293 plasma membranes. Aromatic and hydrophobic residues on the interfacial binding surface of Atxs are important for productive binding to both zwitterionic and anionic vesicles, while basic and polar residues have a negative impact on binding to zwitterionic vesicles. When tightly bound to the membrane interface, Atxs can reach full enzymatic activity at low micromolar concentrations of Ca(2+). Although Atxs have evolved to function as potent neurotoxins that specifically target presynaptic nerve terminals, they display a high degree of phospholipolytic efficiency on various phospholipid membranes.  相似文献   

18.
A comparative lipidomics approach was employed to investigate the changes in membrane phospholipids during the procession of cellular development and apoptosis of two plant cell lines, Taxus cuspidata and Taxus chinensis var. mairei. Analysis of lipids by LC/ESI/MS(n) showed more than 90 phospholipid molecular species and indicated significant differences in the abundance throughout a 3-week period. Phosphatidic acid (PA), phosphatidylcholine (PC) and lysophosphatidylcholine (LysoPC) were three important lipid groups that were responsible for the discrimination between the apoptotic T. chinensis var. mairei and living T. cuspidata cells. Continuous increase of phospholipase D (PLD) activity led to PA production in apoptotic T. chinensis var. mairei cells suggesting that the PLD activation and PA formation mediated the apoptosis. Comparison of the profiles of phosphatidylbutanol (PtdBut) with those of PC or phosphatidylethanolamine (PE) indicated that PC rather than PE was the major substrate of PLD in vivo. These results suggest that the alternation of membrane phospholipids may regulate apoptosis, triggering an increase in taxol production of T. chinensis var. mairei cells.  相似文献   

19.
A promising target on tumor vasculature is phosphatidylserine (PS), an anionic phospholipid that resides exclusively on the inner leaflet of the plasma membrane of resting mammalian cells. We have shown previously that PS becomes exposed on the surface of endothelial cells (EC) in solid tumors. To target PS on tumor vasculature, the murine monoclonal antibody 3G4 was developed. 3G4 localizes to tumor vasculature, inhibits tumor growth, and enhances anti-tumor chemotherapies without toxicity in mice. A chimeric version of 3G4 is in clinical trials. In this study, we investigated the basis for the interaction between 3G4 and EC with surface-exposed PS. We demonstrate that antibody binding to PS is dependent on plasma protein beta-2-glycoprotein 1 (beta2GP1). beta2GP1 is a 50-kDa glycoprotein that binds weakly to anionic phospholipids under physiological conditions. We show that 3G4 enhances binding of beta2GP1 to EC induced to expose PS. We also show that divalent 3G4-beta2GP1 complexes are required for enhanced binding, since 3G4 Fab' fragments do not bind EC with exposed PS. Finally, we demonstrate that an artificial dimeric beta2GP1 construct binds to EC with exposed PS in the absence of 3G4, confirming that antibody binding is mediated by dimerization of beta2GP1. Together, these data indicate that 3G4 targets tumor EC by increasing the avidity of beta2GP1 for anionic phospholipids through formation of multivalent 3G4-beta2GP1 complexes.  相似文献   

20.
Abciximab (Abci) and eptifibatide (Epti) are antiaggregate drugs which may reduce thrombotic complications in acute coronary syndromes. The aim of this work was the investigation of the interaction between the phospholipid-GPIIb/IIIa glycoprotein complex and Abci or Epti, and the influence of these drugs on the phospholipid ratio in the platelet membrane. The interaction between the phospholipid-GPIIb/IIIa glycoprotein complex and antiaggregate drugs were investigated using the Surface Plasmon Resonance Imaging technique (SPRI). Phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM) were first immobilized onto the gold chip surface. The phospholipid ratio in the platelet membrane was determined by the HPLC. Only PI, PS, PE and PC were determined. Human platelets treated 'in vitro' with Abci or Epti exhibit changes in the phospholipid ratio in the platelet membrane. The ratio of PS decreases and PC rises. The SPRI distinctly shows interactions between phospholipids and glycoprotein GPIIb/IIIa, and between the phospholipid-glycoprotein GPIIb/IIIa complex and Abci or Epti. The interaction between phospholipids and glycoprotein GPIIb/IIIa is growing in the sequence: PI相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号