首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of mRNA recognition by proteins interacting with the mRNA cap structure was investigated by photochemical cross-linking of proteins with 32P-labelled reoviral RNAs. Using ribosomal washes as a source of eukaryotic protein synthesis initiation factors, we identified the well-known cap binding proteins eIF-4B and -4E, but eIF-2 and eIF-3 as well. The interplay of purified eIF-4A, -4B, and -4F was studied in relation to ATP dependence and cap analogue sensitivity of cap binding. Next to their well-known roles in the initiation process, eIF-2 and eIF-3 also cross-linked to the 5' cap. eIF-2 stimulated eIF-4B and -4E cross-linking, an observation that has been previously described more extensively. The interaction of eIF-2 with the 5' end of mRNA was extremely sensitive to K(+)-ions and was resistant to a high concentration of Mg(2+)-ions; this influence of mono- and divalent ions was in contrast with the cross-linking of eIF-4B and -4E. Optimal interaction of these factors was obtained at moderate K+ concentration and low Mg(2+)-ion concentrations. eIF-2 cross-linking was sensitive to high protein to mRNA ratios indicating a weak affinity as compared to eIF-4E and -4B. The interaction of eIF-3 with the cap of mRNA is also weak as it was counteracted by all other cap binding proteins, leading to an inability to detect the cross-linking of this protein in crude eIF preparations. Time kinetics of formation of complexes suggested eIF-2 to be one of the first factors to interact with mRNA. Preformed RNA-protein complexes were dissociated after cap analogue addition, suggesting reversible interactions between RNA and proteins.  相似文献   

2.
The effects of 5' proximal secondary structure in mRNA molecules on their translation and on their interaction with the eukaryotic initiation factors (eIF)-4F, eIF-4A, and eIF-4B have been examined. Secondary structures were generated in the 5' noncoding region of rabbit globin and reovirus mRNAs by means of hybridization with cDNA molecules. cDNAs hybridized to the first 15 bases downstream from the cap inhibited the translation of the mRNAs in both reticulocyte and wheat germ lysates. The degree of inhibition was directly related to the monovalent ion concentration and inversely related to reaction temperature. These hybrid structures also reduced the competitive ability of the messages. Hybrid structures beginning downstream from the first 15 bases did not inhibit the translation of beta-globin mRNA or reovirus s3 mRNA. None of the hybrid structures were detrimental to the interaction of the mRNAs with the 26-kDa cap binding protein of eIF-4F, as determined by chemical cross-linking assays. However, in the presence of ATP, hybrid structures immediately adjacent to the cap severely inhibited the cross-linking to the p46 subunit of eIF-4F or to additional eIF-4A or eIF-4B. In order to account for these observations, a two-step mechanism is proposed for the interaction of eIF-4F with the 5' end of an mRNA molecule. The first step involves a weak initial interaction of the p26 subunit with the cap. The second step requires the hydrolysis of ATP and results in the formation of a stable initiation factor-mRNA complex, which may involve eIF-4A and eIF-4B. This second step is inhibited by the presence of 5' proximal secondary structure. In any event, our results demonstrate that the effect of mRNA structure on translation rate depends strongly on its position with respect to the 5' end and that this effect is due at least in part to an inhibition of the action of initiation factors normally required for the unwinding of structure.  相似文献   

3.
We studied the mRNA-binding properties of eukaryotic initiation factor (eIF) 2. This Met-tRNA-binding factor interacts with the cap structure of reoviral mRNA in an ATP-independent manner. Both the beta- and gamma-subunit of eIF-2 are involved in the UV-induced cross-linking of eIF-2 to the cap. The interaction of eIF-2 with a messenger is sensitive to the cap analogue 7-methyl-guanosine 5'-triphosphate as measured by cross-linking and by mRNA retention on nitrocellulose filters. The cap-binding property of eIF-2 does not conflict with the current mRNA-binding model of initiation factors eIF-4A, -4B, and -4F: cross-linking of eIF-4E and of eIF-4B is stimulated by eIF-2. The eIF-2-mediated increase of eIF-4E interaction results in a decrease of the cross-linking of the beta- and gamma-subunits of eIF-2. The presence of GTP in the cross-linking assay interferes with the interaction of eIF-2 with the cap structure but does not inhibit the eIF-2 stimulated eIF-4E and -4B cross-linking. These observations indicate a role for eIF-2 in the mRNA recognition.  相似文献   

4.
The mechanism of ribosome binding to eucaryotic mRNAs is not well understood, but it requires the participation of eucaryotic initiation factors eIF-4A, eIF-4B, and eIF-4F and the hydrolysis of ATP. Evidence has accumulated in support of a model in which these initiation factors function to unwind the 5'-proximal secondary structure in mRNA to facilitate ribosome binding. To obtain direct evidence for initiation factor-mediated RNA unwinding, we developed a simple assay to determine RNA helicase activity, and we show that eIF-4A or eIF-4F, in combination with eIF-4B, exhibits helicase activity. A striking and unprecedented feature of this activity is that it functions in a bidirectional manner. Thus, unwinding can occur either in the 5'-to-3' or 3'-to-5' direction. Unwinding in the 5'-to-3' direction by eIF-4F (the cap-binding protein complex), in conjunction with eIF-4B, was stimulated by the presence of the RNA 5' cap structure, whereas unwinding in the 3'-to-5' direction was completely cap independent. These results are discussed with respect to cap-dependent versus cap-independent mechanisms of ribosome binding to eucaryotic mRNAs.  相似文献   

5.
The ATP-dependent interaction of eukaryotic initiation factors with mRNA   总被引:35,自引:0,他引:35  
The interaction of three protein synthesis initiation factors, eukaryotic initiation factor (eIF)-4A, -4B, and -4F, with mRNA has been examined. Three assays specifically designed to evaluate this interaction are RNA-dependent ATP hydrolysis, retention of mRNAs on nitrocellulose filters, and cross-linking to periodate-oxidized mRNAs. The ATPase activity of eIF-4A is only activated by RNA which is lacking in secondary structure, and the minimal size of an oligonucleotide capable of effecting an optimal activation is 12-18 bases. In the presence of ATP, eIF-4A is capable of binding mRNA. Consistent with the ATPase activity, this binding shows a definite preference for single-stranded RNA. In the absence of ATP, eIF-4F is the only factor to bind capped mRNAs, and this binding, unlike that of eIF-4A, is sensitive to m7GDP inhibition. The activities of both eIF-4A and eIF-4F are stimulated by eIF-4B, which seems to have no specific independent activity in our assays. Evidence from the cross-linking studies indicates that in the absence of ATP, only the 24,000-dalton polypeptide of eIF-4F binds to the 5' cap region of the mRNA. From the data presented in conjunction with the current literature, a suggested sequence of factor binding to mRNA is: eIF-4F is the first initiation factor to bind mRNA ind an ATP-independent fashion; eIF-4B then binds to eIF-4F, if in fact it was not already bound prior to mRNA binding; and finally, eIF-4A binds to the eIF-4F X eIF-4B X mRNA complex and functions in an ATP-dependent manner to allow unwinding of the mRNA.  相似文献   

6.
Three mammalian eukaryotic initiation factors (eIF) are required for the ATP-dependent binding of mRNA to the 40 S ribosomal subunit. These three factors, eIF-4A, eIF-4B, and eIF-4F, have also been isolated from wheat germ. Three assays were used to measure the ability of the wheat germ factors to interact with and/or substitute for the mammalian factors. Two assay systems were used to measure partial reactions involving the interaction of the three factors, ATP, and mRNA: 1) RNA-dependent ATP hydrolysis and 2) cross-linking of the factors to the 5' cap of oxidized mRNA. A third assay system was used to measure the ability of the factors to support initiation of protein synthesis. The results of the ATP hydrolysis and cross-linking experiments indicate that the wheat germ factors can interact with or substitute for the mammalian factors. Wheat germ eIF-4A appears to be functionally equivalent to mammalian eIF-4A. Wheat germ eIF-4B and eIF-4F appear to be isozymes possessing functions similar to mammalian eIF-4F. Wheat germ eIF-4B does not appear to be a functional equivalent to the mammalian eIF-4B. In a complete translation system from wheat germ, mammalian factors partially substitute for wheat germ factors, whereas the wheat germ factors are ineffective in the mammalian system.  相似文献   

7.
A crude ribosomal wash containing the initiation factors of protein synthesis was isolated from mouse neuroblastoma cells 8 h after infection with Semliki Forest virus (SFV). The activity of this wash was compared with that of a wash from control cells in a cell-free protein-synthesizing “pH5” system, with early SFV mRNA (42S), late SFV mRNA (26S), encephalomyocarditis virus (EMC) mRNA, or neuroblastoma polyadenylated mRNA templates. A pronounced loss of activity (±80%) of the crude ribosomal wash from infected cells was observed with host mRNA (neuroblastoma polyadenylated mRNA) and early SFV mRNA, messengers which contain a cap structure at the 5′ terminus. However, these washes were only slightly less active in systems programmed with (noncapped) EMC mRNA and late SFV mRNA. Although late SFV mRNA (26S) is capped, the synthesis of late (= structural) proteins in infected lysates was insensitive to inhibition by cap analogs. Purified initiation factors eIF-4B (Mr, 80,000) and cap-binding protein (Mr, 24,000) from reticulocytes (but none of the others) were able to restore the activity of infected factors to about 90% of control levels in systems programmed with early SFV mRNA and host mRNA. These observations indicate that infection-exposed crude initiation factors have a decreased level of eIF-4B and cap-binding protein activity. However, after partial purification of these and other initiation factors from infected and control cells, we found no significant difference in activity when model assay systems were used. Furthermore, both eIF-4B and cap-binding protein from infected cells were able to restore the activity of these infection-exposed factors to the same level obtained when these factors isolated from control cells or reticulocytes were added. A possible mechanism for the shutoff of host cell protein synthesis is discussed.  相似文献   

8.
9.
The efficiency of translation of alfalfa mosaic virus (AMV) RNA 4, barley alpha-amylase (B alpha A) mRNA, and two chimeric mRNAs, AMV 4-B alpha A and B alpha A-AMV 4 (in which the 5' leader sequences of the two mRNAs were interchanged), was measured in an S30 extract from wheat germ and a fractionated system from wheat germ in which translation could be made dependent upon initiation factor (eIF) 3, 4A, 4F, or 4G. In the S30 system, AMV RNA 4 and the chimeric mRNA AMV 4-B alpha A are translated much more efficiently than B alpha A mRNA and the chimeric mRNA B alpha A-AMV 4. When the S30 system was supplemented with high amounts of purified eIF-3, eIF-4A, eIF-4F, and eIF-4G, B alpha A and B alpha A-AMV 4 mRNAs were translated as efficiently as AMV RNA 4 and AMV 4-B alpha A mRNA. These findings indicated that the mRNAs containing the B alpha A leader sequence required higher amounts of one or more of the initiation factors (eIF-3, eIF-4A, eIF-4F, and eIF-4G) for efficient translation. Determination of the amounts of the initiation factors required for translation in the fractionated system showed that AMV RNA 4 required 2-4-fold lower amounts of eIF-3, eIF-4A, eIF-4F, and eIF-4G than did B alpha A mRNA. Replacement of the B alpha A leader sequence with that of AMV RNA 4 decreased the amounts of eIF-4A, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4F required. Replacement of the AMV RNA 4 leader sequence with that of B alpha A mRNA increased the amounts of eIF-4F, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4A required. These data strongly suggest that the amounts of the factors required are affected not only by the 5' leader itself but also by interactions between the 5' leader and a region(s) of the mRNA 3' to the initiation codon.  相似文献   

10.
11.
The ability of polypeptide components of eukaryotic initiation factor (eIF) 4F to bind to the m7G cap of an mRNA, to be released from that mRNA, and then to rebind to the cap of a second mRNA has been investigated. The release and rebinding steps have been termed "recycling." It was found that eIF-4B stimulates the recycling of the 24-26 kDa (p24) component of eIF-4F, and perhaps of other components as well. By contrast, eIF-4A seemed to have little or no effect on the recycling of eIF-4F components, either in the presence or absence of eIF-4B. The recycled p24 is capable of cross-linking to oxidized cap structures. The recycled factor is also able to stimulate the cross-linking of added eIF-4A, which cross-links poorly in the absence of eIF-4F. By these criteria it seems likely that the recycled eIF-4F components are active for a second round of translational initiation.  相似文献   

12.
Overview: mechanism of translation initiation in eukaryotes   总被引:1,自引:0,他引:1  
W C Merrick 《Enzyme》1990,44(1-4):7-16
Evidence to date has placed considerable emphasis on protein synthesis initiation as the dominant site of translational control. Two specific aspects are regulated, the binding of the initiator tRNA to the 40S subunits (as a ternary complex with eIF-2 and GTP) and the subsequent binding of mRNA to the complex of the 40S subunit with initiator tRNA. In addition to regulation, eIF-2 and Met-tRNAf are in large part responsible for selection of the initiating AUG codon. The utilization of most host mRNAs requires an m7G cap structure at the 5' end. However, many viral systems appear to use one of two alternate initiation schemes referred to as re-initiation and internal initiation. The function of specific initiation factors is presented and the consequences of altering the activity of these factors is discussed.  相似文献   

13.
14.
Multiple mRNAs encode the murine translation initiation factor eIF-4E   总被引:6,自引:0,他引:6  
All eukaryotic cellular mRNAs (except organellar) possess at their 5' end the structure m7GpppX (where X is any nucleotide) termed the "cap." The cap structure facilitates the melting of mRNA 5' secondary structure through the action of initiation factor-4F (eIF-4F) in conjunction with eIF-4B. eIF-4F consists of three subunits of which one, eIF-4E (eIF-4E has recently been designated eIF-4 alpha according to the Nomenclature Committee of the International Union of Biochemistry (NC-IUB) (Safer, B. (1989) Eur. J. Biochem. 186, 1-3)), contains the cap binding site. Several lines of evidence suggest that eIF-4E regulates the rate of translation initiation. Consequently, changes in cellular eIF-4E levels could control growth and differentiation. To investigate the possibility that eIF-4E expression is regulated, we studied the pattern of eIF-4E expression in several cell lines. Here, we show the existence of multiple mRNAs for eIF-4E that are generated by differential polyadenylation. In addition, we show tissue-specific differences in eIF-4E mRNA expression and utilization of polyadenylation sites.  相似文献   

15.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation.  相似文献   

16.
Cellular eukaryotic mRNAs (except organellar) contain at the 5' terminus the structure m7(5')Gppp(5')N (where N is any nucleotide), termed cap. Cap recognition by eukaryotic initiation factor eIF-4F plays an important role in regulating the overall rate of translation. eIF-4F is believed to mediate the melting of mRNA 5' end secondary structure and facilitate 43S ribosome binding to capped mRNAs. eIF-4E, the cap-binding subunit of eIF-4F, plays an important role in cell growth; its overexpression results in malignant transformation of rodent cells, and its phosphorylation is implicated in signal transduction pathways of mitogens and growth factors. The molecular mechanism by which eIF-4E transforms cells is not known. Here, we report that overexpression of eIF-4E facilitates the translation of mRNAs containing excessive secondary structure in their 5' non-coding region. This effect may represent one mechanism by which eIF-4E regulates cell growth and transforms cells in culture.  相似文献   

17.
Previous work has shown that eukaryotic initiation factor (eIF)-4B from wheat germ is a complex containing two subunits, 80 and 28 kDa, and eIF-4F from wheat germ is a complex containing two subunits, 220 and 26 kDa (Lax, S., Fritz, W., Browning, K., and Ravel, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 330-333). Here we show that both the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F cross-link to the 5' terminus of capped and oxidized satellite tobacco necrosis virus RNA in the absence of ATP and that the cross-linking of both polypeptides is inhibited by m7GDP. Several lines of evidence indicate that the 28-kDa and the 26-kDa cap binding proteins of eIF-4B and eIF-4F are antigenically distinct polypeptides. Rabbit polyclonal antibodies raised to intact eIF-4B or to the isolated 28-kDa subunit of eIF-4B react strongly with the 28-kDa subunit of eIF-4B on immunoblots, but show only a very weak reaction with the 26-kDa subunit of eIF-4F under the same conditions. In addition, a mouse monoclonal antibody was obtained that reacts strongly with the 26-kDa subunit of eIF-4F but does not react with the 28-kDa subunit of eIF-4B. Evidence is presented also which indicates that the higher molecular weight subunits of eIF-4B and eIF-4F are antigenically distinct. Rabbit polyclonal antibodies raised to intact eIF-4B or the isolated 80-kDa subunit inhibit eIF-4B-dependent polypeptide synthesis but do not inhibit eIF-4F-dependent polypeptide synthesis. Rabbit polyclonal antibodies raised to eIF-4F inhibit eIF-4F-dependent polypeptide synthesis but do not inhibit eIF-4B-dependent polypeptide synthesis.  相似文献   

18.
19.
M Altmann  S Blum  T M Wilson  H Trachsel 《Gene》1990,91(1):127-129
Messenger RNAs encoding chloramphenicol acetyltransferase (CAT) with or without the 5'-leader sequence of tobacco mosaic virus (TMV) RNA were synthesized in vitro and translated in Saccharomyces cerevisiae extracts dependent on eukaryotic initiation factors eIF-4E or eIF-4A. The 5'-leader sequence of TMV RNA renders translation of CAT mRNA eIF-4E-independent but still 4A-dependent.  相似文献   

20.
Ribosome binding to mRNA requires the concerted action of three initiation factors, eIF-4A, eIF-4B, and eIF-4F, and the hydrolysis of ATP in a mechanism that is not well understood. Several lines of evidence support a model by which these factors bind to the 5' end of mRNA and unwind proximal secondary structure, thus allowing 40S ribosomal subunits to bind. We have previously used an unwinding assay to demonstrate that eIF-4A or eIF-4F in combination with eIF-4B functions as an RNA helicase. To elucidate the molecular mechanism of RNA unwinding, we used a mobility shift electrophoresis assay which allows the simultaneous analysis of unwinding and complex formation between these factors and RNA. eIF-4F forms a stable complex (complex A) with duplex RNA in the absence of ATP. Addition of eIF-4B results in the formation of a second complex (complex B) of slower mobility in the gel. In the presence of ATP, both complexes dissociate, concomitant with the unwinding of the duplex RNA. We present evidence to suggest that unwinding occurs in a processive as opposed to distributive manner. Thus, we conclude that helicase complexes that are formed in the absence of ATP on duplex RNA translocate processively along the RNA in an ATP-dependent reaction and melt secondary structure. These helicase complexes therefore represent intermediates in the unwinding process of mRNA that could precede ribosome binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号