首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein (apo) C-III and apoE play a central role in controlling the plasma metabolism of triglyceride-rich lipoproteins (TRL). We have investigated the plasma kinetics of total, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) apoC-III and apoE in normolipidemic (NL) (n = 5), hypertriglyceridemic (HTG, n = 5), and Type III hyperlipoproteinemic (n = 2) individuals. Apolipoprotein kinetics were investigated using a primed constant (12 h) infusion of deuterium-labeled leucine. HTG and Type III patients had reduced rates of VLDL apoB-100 catabolism and no evidence of VLDL apoB-100 overproduction. Elevated (3- to 12-fold) total plasma and VLDL apoC-III levels in HTG and Type III patients, although associated with reduced apoC-III catabolism (i.e., increased residence times (RTs)), were mainly due to increased apoC-III production (plasma apoC-III transport rates (TRs, mean +/- SEM): (NL) 2.05 +/- 0.22 (HTG) 4.90 +/- 0.81 (P < 0.01), and (Type III) 8.78 mg. kg(-)(1). d(-)(1); VLDL apoC-III TRs: (NL) 1.35 +/- 0. 23 (HTG) 5.35 +/- 0.85 (P < 0.01), and (Type III) 7.40 mg. kg(-)(1). d(-)(1)). Elevated total plasma and VLDL apoE levels in HTG (2- and 6-fold, respectively) and in Type III (9- and 43-fold) patients were associated with increased VLDL apoE RTs (0.21 +/- 0.02, 0.46 +/- 0. 05 (P < 0.01), and 1.21 days, NL vs. HTG vs. Type III, respectively), as well as significantly increased apoE TRs (plasma: (NL) 2.94 +/- 0.78 (HTG) 5.80 +/- 0.59 (P < 0.01) and (Type III) 11.80 mg. kg(-)(1). d(-)(1); VLDL: (NL) 1.59 +/- 0.18 (HTG) 4.52 +/- 0.61 (P < 0.01) and (Type III) 11.95 mg. kg(-)(1). d(-)(1)).These results demonstrate that hypertriglyceridemic patients, having reduced VLDL apoB-100 catabolism (including patients with type III hyperlipoproteinemia) are characterized by overproduction of plasma and VLDL apoC-III and apoE.  相似文献   

2.
Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and alpha-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism.  相似文献   

3.
Numerous factors are known to affect the plasma metabolism of HDL, including lipoprotein receptors, lipid transfer protein, lipolytic enzymes and HDL apolipoproteins. In order to better define the role of HDL apolipoproteins in determining plasma HDL concentrations, the aims of the present study were: a) to compare the in vivo rate of plasma turnover of HDL apolipoproteins [i.e., apolipoprotein A-I (apoA-I), apoC-I, apoC-III, and apoE], and b) to investigate to what extent these metabolic parameters are related to plasma HDL levels. We thus studied 16 individuals with HDL cholesterol levels ranging from 0.56-1.66 mmol/l and HDL apoA-I levels ranging from 89-149 mg/dl. Plasma kinetics of HDL apolipoproteins were investigated using a primed constant (12 h) infusion of deuterated leucine. Plasma HDL apolipoprotein levels were 41.8 +/- 1.5, 9.7 +/- 0.5, 4.9 +/- 0.5, and 0.7 +/- 0.1 micromol/l for apoA-I, apoC-I, apoC-III and apoE. Plasma transport rates (TRs) were 388.6 +/- 24.7, 131.5 +/- 12.5, 66.5 +/- 9.1, and 31.4 +/- 3.3 nmol.kg-1.day-1; and residence times (RTs) were 5.1 +/- 0.4, 3.7 +/- 0.3, 3.6 +/- 0.3, and 1.1 +/- 0.1 days, respectively. HDL cholesterol and apoA-I levels were significantly correlated with HDL apoA-I RT (r = 0.69 and r = 0.56), and were not significantly correlated with HDL apoA-I TR. In contrast, HDL apoC-I, apoC-III, and apoB levels were all positively related to their TRs and not their RTs. HDL apoC-III TR was positively correlated with levels of HDL apoC-III (r = 0.73, P < 0.01), and with those of HDL cholesterol and apoA-I (r = 0.54 and r = 0.53, P < 0.05, respectively). HDL apoC-III TR was in turn related to HDL apoA-I RT (r = 0.51, P < 0.05). Together, these results provide in vivo evidence for a link between the metabolism of HDL apoC-III and apoA-I, and suggest a role for apoC-III in the regulation of plasma HDL levels.  相似文献   

4.
The effect of frozen storage on lipoprotein distribution of apolipoprotein C-III (apoC-III) and apoE was investigated by measuring apoC-III and apoE by ELISA in HDL and apoB-containing lipoproteins of human plasma samples (n = 16) before and after 2 weeks of frozen storage (-20 degrees C). HDLs were separated by heparin-manganese precipitation (HMP) or by fast-protein liquid chromatography (FPLC). Total plasma apoC-III and apoE levels were not affected by frozen storage. HDL-HMP apoC-III and apoE levels were significantly higher in frozen versus fresh samples: 7.7 +/- 0.7 versus 6.7 +/- 0.7 mg/dl (P < 0.05) and 2.0 +/- 0.1 versus 1.2 +/- 0.1 mg/dl (P < 0.001), respectively. HDL-FPLC apoC-III and apoE, but not triglyceride (TG) or cholesterol, levels were also higher in frozen samples: 12.0 +/- 1.2 versus 7.5 +/- 0.6 mg/dl (P < 0.001) and 2.7 +/- 0.2 versus 1.6 +/- 0.2 mg/dl (P < 0.001), respectively. Frozen storage led to a decrease in apoC-III (-17 +/- 9%) and apoE (-19 +/- 9%) in triglyceride-rich lipoprotein. Redistribution of apoC-III and apoE was most evident in samples with high TG levels. HDL apoC-III and apoE levels were also significantly higher when measured in plasma stored at -80 degrees C. Our results demonstrate that lipoprotein distribution of apoC-III and apoE is affected by storage of human plasma, suggesting that analysis of frozen plasma should be avoided in studies relating lipoprotein levels of apoC-III and/or apoE to the incidence of coronary artery disease.  相似文献   

5.
Mipomersen, an antisense oligonucleotide that reduces hepatic production of apoB, has been shown in phase 2 studies to decrease plasma apoB, LDL cholesterol (LDL-C), and triglycerides. ApoC-III inhibits VLDL and LDL clearance, and it stimulates inflammatory responses in vascular cells. Concentrations of VLDL or LDL with apoC-III independently predict cardiovascular disease. We performed an exploratory posthoc analysis on a subset of hypercholesterolemic subjects obtained from a randomized controlled dose-ranging phase 2 study of mipomersen receiving 100, 200, or 300 mg/wk, or placebo for 13 wk (n = 8 each). ApoC-III-containing lipoproteins were isolated by immuno-affinity chromatography and ultracentrifugation. Mipomersen 200 and 300 mg/wk reduced total apoC-III from baseline by 6 mg/dl (38-42%) compared with placebo group (P < 0.01), and it reduced apoC-III in both apoB lipoproteins and HDL. Mipomersen 100, 200, and 300 mg doses reduced apoB concentration of LDL with apoC-III (27%, 38%, and 46%; P < 0.05). Mipomersen reduced apoC-III concentration in HDL. The drug had no effect on apoE concentration in total plasma and in apoB lipoproteins. In summary, antisense inhibition of apoB synthesis reduced plasma concentrations of apoC-III and apoC-III-containing lipoproteins. Lower concentrations of apoC-III and LDL with apoC-III are associated with reduced risk of coronary heart disease (CHD) in epidemiologic studies independent of traditional risk factors.  相似文献   

6.
《Journal of lipid research》2017,58(6):1214-1220
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.  相似文献   

7.
Using immunoaffinity chromatography to isolate apoC-III from radiolabeled lipoproteins for direct determination of specific radioactivity, we have studied the metabolism of human apoC-III in VLDL and in HDL following the bolus injection of 125I-labeled VLDL. Transfer of apoC-III radioactivity from VLDL to HDL was detected in the plasma sample drawn 5 min after injection of the tracer. However, the specific radioactivity of apoC-III in VLDL was found to be higher than that in HDL, with this difference being maintained throughout the sampling period (48-72 hr). The ratios of the respective specific activities ranged from 1.2 to 1.9 in six subjects studied (two normolipidemics and four hypertriglyceridemics). When 125I-labeled HDL was injected as the tracer, however, the higher apoC-III specific radioactivity was associated with the HDL fraction. This lack of complete equilibration of apoC-III between VLDL and HDL in vivo was further characterized by in vitro studies using either 125I-labeled VLDL or 125I-labeled HDL. All incubations were carried out for 3 hr at 37 degrees C followed by 16 hr at 4 degrees C and the apoC-III specific activity in each lipoprotein fraction was directly determined after immunoaffinity chromatography. In a study of plasma from a mildly hypertriglyceridemic subject in which 125I-labeled VLDL was incubated with unlabeled HDL, apoC-III specific activities in VLDL remained 30% greater than that in HDL. When 125I-labeled HDL (from the same subject) was incubated with unlabeled VLDL of apoC-III, final specific activity in VLDL was less than 10% of that of HDL apoC-III. Differences in specific activities were also demonstrated when radiolabeled purified apoC-III was exchanged onto VLDL prior to its incubation with HDL. A consistent difference in apoC-III specific activities in VLDL and HDL was observed after isolation of the particles either by molecular sieve chromatography or by ultracentrifugation. These studies demonstrated that, while the exchange of apoC-III between VLDL and HDL may be very rapid, this equilibration is not complete. Pools of apoC-III that do not participate in the equilibration process are present in both the VLDL and HDL fractions and could account for 30-60% of the total apoC-III mass in each lipoprotein fraction.  相似文献   

8.
ApoC-II and apoC-III of human very low density lipoproteins (VLDL) have been quantified by analytical isoelectric focusing (IEF) between pH 4 and 6 in polyacrylamide gels containing 8 M urea. The isoelectric point of apoC-III0 is pH 4.93; apoC-II, pH 4.78; apoC-III1, pH 4.72, and apoC-III2, pH 4.54. ApoC-I is not found in the pH range between pH 4 and 6. Two minor peptides, apoC-IV and apoC-V, with isoelectric points of pH 4.61 and 4.44, respectively, are apoproteins not previously identified. The sensitivity (5--40 microgram) and reproducibility (+/- 8%) of this method allow quantitative analysis of apoC-II and apoC-III distribution in VLDL.  相似文献   

9.
The atherogenicity theory for triglyceride-rich lipoproteins (TRLs; VLDL + intermediate density lipoprotein) generally cites the action of apolipoprotein C-III (apoC-III), a component of some TRLs, to retard their metabolism in plasma. We studied the kinetics of multiple TRL and LDL subfractions according to the content of apoC-III and apoE in 11 hypertriglyceridemic and normolipidemic persons. The liver secretes mainly two types of apoB lipoproteins: TRL with apoC-III and LDL without apoC-III. Approximately 45% of TRLs with apoC-III are secreted together with apoE. Contrary to expectation, TRLs with apoC-III but not apoE have fast catabolism, losing some or all of their apoC-III and becoming LDL. In contrast, apoE directs TRL flux toward rapid clearance, limiting LDL formation. Direct clearance of TRL with apoC-III is suppressed among particles also containing apoE. TRLs without apoC-III or apoE are a minor, slow-metabolizing precursor of LDL with little direct removal. Increased VLDL apoC-III levels are correlated with increased VLDL production rather than with slow particle turnover. Finally, hypertriglyceridemic subjects have significantly greater production of apoC-III-containing VLDL and global prolongation in residence time of all particle types. ApoE may be the key determinant of the metabolic fate of atherogenic apoC-III-containing TRLs in plasma, channeling them toward removal from the circulation and reducing the formation of LDLs, both those with apoC-III and the main type without apoC-III.  相似文献   

10.
The apoproteins (apo) C-I, C-II, and C-III are low molecular weight amphiphilic proteins that are associated with the lipid surface of the plasma chylomicron, very low density lipoprotein (VLDL), and high-density lipoprotein (HDL) subfractions. Purified apoC-I spontaneously reassociates with VLDL, HDL, and single-bilayer vesicles (SBV) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. ApoC-I also transfers reversibly from VLDL to HDL and from VLDL and HDL to SBV. The kinetics of association of the individual apoC proteins with SBV are second order overall and first order with respect to lipid and protein concentrations. At 37 degrees C, the rates of association were 2.5 x 10(10), 4.0 x 10(10) and 3.8 x 10(10) M-1 s-1 for apoC-I, apoC-II, and apoC-III, respectively. Arrhenius plots of association rate vs temperature were linear and yielded activation energies of 11.0 (apoC-I), 9.0 (apoC-II), and 10.6 kcal/mol (apoC-III). The kinetics of vesicle to vesicle apoprotein transfer are biexponential for intermembrane transfer, indicating two concurrent transfer processes. Rate constants at 37 degrees C for the fast component of dissociation were 11.7, 9.5, and 9.9 s-1, while rate constants for the slow component were 1.3, 0.6, and 0.9 s-1 for apoC-I, apoC-II, and apoC-III, respectively. The dissociation constants, Kd, of apoC-I, apoC-II, and apoC-III bound to the surface monolayer of phospholipid-coated latex beads were 0.5, 1.4, and 0.5 microM, respectively. These studies show that the apoC proteins are in dynamic equilibrium among phospholipid surfaces on a time scale that is rapid compared to lipolysis, lipid transfer, and lipoprotein turnover.  相似文献   

11.
Apolipoprotein (apo) C-III is a marker protein of triacylglycerol (TG)-rich lipoproteins and high-density lipoproteins (HDL), and has been proposed as a risk factor of coronary heart disease. To compare the physiologic role of reconstituted HDL (rHDL) with or without apoC-III, we synthesized rHDL with molar ratios of apoA-I:apoC-III of 1:0, 1:0.5, 1:1, and 1:2. Increasing the apoC-III content in rHDL produced smaller rHDL particles with a lower number of apoA-I molecules. Furthermore, increasing the molar ratio of apoC-III in rHDL enhanced the surfactant-like properties and the ability to lyse dimyristoyl phosphatidylcholine. Furthermore, rHDL containing apoC-III was found to be more resistant to particle rearrangement in the presence of low-density lipoprotein (LDL) than rHDL that contained apoA-I alone. In addition, the lecithin:cholesterol acyltransferase (LCAT) activation ability was reduced as the apoC-III content of the rHDL increased; however, the CE transfer ability was not decreased by the increase of apoC-III. Finally, rHDL containing apoC-III aggravated the production of MDA in cell culture media, which led to increased cellular uptake of LDL. Thus, the addition of apoC-III to rHDL induced changes in the structural and functional properties of the rHDL, especially in particle size and rearrangement and LCAT activation. These alterations may lead to beneficial functions of HDL, which is involved in anti-atherogenic properties in the circulation.  相似文献   

12.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

13.
The relevance of apolipoprotein A-V (apoA-V) for human lipid homeostasis is underscored by genetic association studies and the identification of truncation-causing mutations in the APOA5 gene as a cause of type V hyperlipidemia, compatible with an LPL-activating role of apoA-V. An inverse correlation between plasma apoA-V and triglyceride (TG) levels has been surmised from animal data. Recent studies in human subjects using (semi)quantitative immunoassays, however, do not provide unambiguous support for such a relationship. Here, we used a novel, validated ELISA to measure plasma apoA-V levels in patients (n = 28) with hypertriglyceridemia (HTG; 1.8-78.7 mmol TG/l) and normolipidemic controls (n = 42). Unexpectedly, plasma apoA-V levels were markedly increased in the HTG subjects compared with controls (1,987 vs. 258 ng/ml; P < 0.001). In the HTG group, apoA-V and TG were positively correlated (r = +0.44, P = 0.02). In addition, we noted an increased level of the LPL-inhibitory protein apoC-III in the HTG group (45.8 vs. 10.6 mg/dl in controls; P < 0.001). The correlation between apoA-V and TG levels in the HTG group disappeared (partial r = +0.09, P = 0.65) when controlling for apoC-III levels. In contrast, apoC-III and TG remained positively correlated in this group when controlling for apoA-V (partial r = +0.43, P = 0.025). Our findings suggest that in HTG patients, increased TG levels are accompanied by high plasma levels of apoA-V and apoC-III, apolipoproteins with opposite modes of action. This study provides evidence for a complex interaction between apoA-V and apoC-III in patients with severe HTG.  相似文献   

14.
Abdominal obesity is associated with a decreased plasma concentration of HDL cholesterol and with qualitative modifications of HDL, such as triglyceride enrichment. Our aim was to determine, in isolated aorta rings, whether HDL from obese subjects can counteract the inhibitory effect of oxidized low density lipoprotein (OxLDL) on endothelium-dependent vasodilation as efficiently as HDL from normolipidemic, lean subjects. Plasma triglycerides were 74% higher (P < 0.005) in obese subjects compared with controls, and apolipoprotein A-I (apoA-I) and HDL cholesterol concentrations were 12% and 17% lower (P < 0.05), respectively. HDL from control subjects significantly reduced the inhibitory effect of OxLDL on vasodilation [maximal relaxation (E(max)) = 82.1 +/- 8.6% vs. 54.1 +/- 8.1%; P < 0.0001], but HDL from obese subjects had no effect (E(max) = 47.2 +/- 12.5% vs. 54.1 +/- 8.1%; NS). In HDL from abdominally obese subjects compared with HDL from controls, the apoA-I content was 12% lower (P < 0.05) and the triglyceride-to-cholesteryl ester ratio was 36% higher (P = 0.08)). E(max)(OxLDL + HDL) was correlated with HDL apoA-I content and triglyceride-to-cholesteryl ester ratio (r = 0.36 and r = -0.38, respectively; P < 0.05). We conclude that in abdominally obese subjects, the ability of HDL to counteract the inhibitory effect of OxLDL on vascular relaxation is impaired. This could contribute to the increased cardiovascular risk observed in these subjects.  相似文献   

15.
Apolipoprotein C-III (apoC-III) production rate (PR) is strongly correlated with plasma triglyceride (TG) levels. ApoC-III exists in three different isoforms, according to the sialylation degree of the protein. We investigated the kinetics and respective role of each apoC-III isoform in modulating intravascular lipid/lipoprotein metabolism. ApoC-III kinetics were measured in a sample of 18 healthy men [mean age (+/-SD) 42.1 +/- 9.5 years, body mass index 29.8 +/- 4.6 kg/m2] using a primed-constant infusion of l-(5,5,5-D3) leucine for 12 h. Mono-sialylated and di-sialylated apoC-III (apo-CIII1 and apoC-III2) exhibited similar PRs (means +/- SD, 1.22 +/- 0.49 mg/kg/day vs. 1.15 +/- 0.59 mg/kg/day, respectively) and similar fractional catabolic rates (FCRs) (0.51 +/- 0.13 pool/day vs. 0.61 +/- 0.24 pool/day, respectively). Nonsialylated apoC-III (apoC-III0) had an 80% lower PR (0.25 +/- 0.12 mg/kg/day) and a 60% lower FCR (0.21 +/- 0.07 pool/day) (P < 0.0001 for comparison with CIII1 and CIII2 isoforms). The PRs of apoC-III1 and apoC-III2 were more strongly correlated with plasma TG levels (r > 0.8, P < 0.0001) than was apoC-III0 PR (r = 0.54, P < 0.05). Finally, the PR of apoC-III2 was strongly correlated with the proportion of LDL <255 A (r = 0.72, P = 0.002). These results suggest that all apoC-III isoforms, especially the predominant CIII1 and CIII2 isoforms, contribute to hypertriglyceridemia and that apoC-III2 may play a significant role in the expression of the small, dense LDL phenotype.  相似文献   

16.
We have developed a technique for isolating apoprotein C-III by immunoaffinity chromatography, allowing the measurement of its specific radioactivity in lipoprotein fractions from small plasma samples. IgG specific for apoC-III was purified from goat antisera and bound to Sepharose. One ml of this gel (5 mg of IgG) bound 80-90 micrograms of apoC-III. The specific activity of apoC-III was determined by application of delipidated very low density lipoproteins to 1-ml columns and analysis of the protein eluted at pH 2.5 for mass and radio-activity. The coefficient fo variation for apoC-III specific activity determination from 125I-labeled VLDL was 4.3%. Minimal contamination of the eluates by apoproteins B, E, and C-II was confirmed by radioimmunoassay (0.3-1.2%). Following the injection of autologous 125I-labeled VLDL, specific activity decay curves for VLDL apoC-III were biexponential, with the clearance of apoC-III being slower in hypertriglyceridemic subjects. These affinity columns can be used repeatedly and yield reproducible results. This technique should be useful for simultaneous studies of the turnover of several apoproteins in the same individual following a single injection of labeled autologous lipoprotein.  相似文献   

17.
Apolipoprotein E2 (apoE2)-associated hyperlipidemia is characterized by a disturbed clearance of apoE2-enriched VLDL remnants. Because excess apoE2 inhibits LPL-mediated triglyceride (TG) hydrolysis in vitro, we investigated whether direct or indirect stimulation of LPL activity in vivo reduces the apoE2-associated hypertriglyceridemia. Here, we studied the role of LPL and two potent modifiers, the LPL inhibitor apoC-III and the LPL activator apoA-V, in APOE2-knockin (APOE2) mice. Injection of heparin in APOE2 mice reduced plasma TG by 53% and plasma total cholesterol (TC) by 18%. Adenovirus-mediated overexpression of LPL reduced plasma TG by 85% and TC by 40%. Both experiments indicate that the TG in apoE2-enriched particles is a suitable substrate for LPL. Indirect activation of LPL activity via deletion of Apoc3 in APOE2 mice did not affect plasma TG levels, whereas overexpression of Apoa5 in APOE2 mice did reduce plasma TG by 81% and plasma TC by 41%. In conclusion, the hypertriglyceridemia in APOE2 mice can be ameliorated by the direct activation of LPL activity. Indirect activation of LPL via overexpression of apoA-V does, whereas deletion of apoC-III does not, affect the plasma TGs in APOE2 mice. These data indicate that changes in apoA-V levels have a dominant effect over changes in apoC-III levels in the improvement of APOE2-associated hypertriglyceridemia.  相似文献   

18.
ApoC-III and apoE are important determinants of intravascular lipolysis and clearance of triglyceride-rich chylomicrons and VLDL from the blood plasma. Interactions of these two apolipoproteins were studied by adding purified human apoC-III to human plasma at levels observed in hypertriglyceridemic subjects and incubating under specific conditions (2 h, 37 degrees C). As plasma concentrations of apoC-III protein were increased, the contents in both VLDL and HDL were also increased. Addition of apoC-III at concentrations up to four times the intrinsic concentration resulted in the decreasing incremental binding of apoC-III to VLDL while HDL bound increasing amounts without evidence of saturation. No changes were found in lipid content or in particle size of any lipoprotein in these experiments. However, distribution of the intrinsic apoE in different lipoprotein particles changed markedly with displacement of apoE from VLDL to HDL. The fraction of VLDL apoE that was displaced from VLDL to HDL at these high apoC-III concentrations varied among individuals from 20% to 100% its intrinsic level. The proportion of VLDL apoE that was tightly bound (0% to 80%) was found to be reproducible and to correlate with several indices of VLDL particle size. In the group of subjects studied, strongly adherent apoE was essentially absent from VLDL particles having an average content of less than 50,000 molecules of triglyceride.Addition of apoC-III to plasma almost completely displaces apoE from small VLDL particles. Larger VLDL contain tightly bound apoE which are not displaced by increasing concentration of apoC-III.  相似文献   

19.
《Journal of lipid research》2017,58(6):1196-1203
The presence of apoC-III on HDL impairs HDL's inverse association with coronary heart disease (CHD). Little is known about modifiable factors explaining variation in HDL subspecies defined according to apoC-III. The aim was to investigate cross-sectional associations of anthropometry and lifestyle with HDL subspecies in 3,631 participants from the Diet, Cancer, and Health study originally selected for a case-cohort study (36% women; age 50–65 years) who were all free of CHD. Greater adiposity and less activity were associated with higher HDL containing apoC-III and lower HDL lacking apoC-III. Per each 15 cm higher waist circumference, the level of HDL containing apoC-III was 2.8% higher (95% CI: 0.4, 5.3; P = 0.024) and the level of HDL not containing apoC-III was 4.7% lower (95% CI: −6.0, −3.4; P = <0.0001). Associations for physical activity were most robust to multivariable modeling. Each 20 metabolic equivalent task hours per week reported higher physical activity was associated with 0.9% (95% CI: −1.7, −0.1; P = 0.031) lower HDL containing apoC-III and 0.5% higher (95% CI: 0.1, 1.0; P = 0.029) HDL lacking apoC-III. Lower alcohol consumption was associated with lower HDL lacking apoC-III (percent difference per 15 g/day: 1.58 (95% CI: 0.84, 2.32; P = <0.0001). Adiposity and sedentary lifestyle were associated with a less favorable HDL subspecies profile.  相似文献   

20.
Moderate chronic kidney disease (CKD) (defined by an estimated glomerular filtration rate of 30–60 ml/min) is associated with mild hypertriglyceridemia related to delayed catabolism of triglyceride-rich lipoprotein particles. Altered apolipoprotein C-III (apoC-III) metabolism may contribute to dyslipidemia in CKD. To further characterize the dyslipidemia of CKD, we investigated the kinetics of plasma apoC-III in 7 nonobese, nondiabetic, non-nephrotic CKD subjects and 7 age- and sex-matched healthy controls, using deuterated leucine ([5, 5, 5, 2H3]leucine), gas chromatography-mass spectrometry, and multicompartmental modeling. Compared with controls, CKD subjects had higher concentrations of plasma and VLDL triglycerides and plasma and VLDL apoC-III (P < 0.05). The increased plasma apoC-III concentration was associated with a decreased apoC-III fractional catabolic rate (FCR) (1.21 ± 0.15 vs. 0.74 ± 0.12 pools/day, P = 0.03). There were no differences between apoC-III production rates of controls and those of CKD subjects. In CKD subjects, plasma apoC-III concentration was significantly and negatively correlated with apoC-III FCR (r = −0.749, P = 0.05) but not with apoC-III production rate. Plasma apoC-III concentration was positively correlated with plasma and VLDL triglycerides and VLDL apoB concentrations and negatively correlated with VLDL apoB FCR (P < 0.05 for all). ApoC-III FCR was negatively correlated with plasma and VLDL triglycerides and VLDL apoB concentration and positively correlated with VLDL apoB FCR (P < 0.05 for all). Altered plasma apoC-III metabolism is a feature of dyslipidemia in moderate CKD. Modification of apoC-III catabolism may be an important therapeutic target for reducing cardiovascular disease risk in moderate CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号