首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory impedance (Zrs) was measured between 0.25 and 32 Hz in seven anesthetized and paralyzed patients by applying forced oscillation of low amplitude at the inlet of the endotracheal tube. Effective respiratory resistance (Rrs; in cmH2O.l-1.s) fell sharply from 6.2 +/- 2.1 (SD) at 0.25 Hz to 2.3 +/- 0.6 at 2 Hz. From then on, Rrs decreased slightly with frequency down to 1.5 +/- 0.5 at 32 Hz. Respiratory reactance (Xrs; in cmH2O.l-1.s) was -22.2 +/- 5.9 at 0.25 Hz and reached zero at approximately 14 Hz and 2.3 +/- 0.8 at 32 Hz. Effective respiratory elastance (Ers = -2pi x frequency x Xrs; in cmH2O/1) was 34.8 +/- 9.2 at 0.25 Hz and increased markedly with frequency up to 44.2 +/- 8.6 at 2 Hz. We interpreted Zrs data in terms of a T network mechanical model. We represented the proximal branch by central airway resistance and inertance. The shunt pathway accounted for bronchial distensibility and alveolar gas compressibility. The distal branch included a Newtonian resistance component for tissues and peripheral airways and a viscoelastic component for tissues. When the viscoelastic component was represented by a Kelvin body as in the model of Bates et al. (J. Appl. Physiol. 61: 873-880, 1986), a good fit was obtained over the entire frequency range, and reasonable values of parameters were estimated. The strong frequency dependence of Rrs and Ers observed below 2 Hz in our anesthetized paralyzed patients could be mainly interpreted in terms of tissue viscoelasticity. Nevertheless, the high Ers we found with low volume excursions suggests that tissues also exhibit plasticlike properties.  相似文献   

2.
A setup is described for measuring the respiratory transfer impedance of conscious rats in the frequency range 16-208 Hz. The rats were placed in a restraining tube in which head and body were separated by means of a dough neck collar. The restraining tube was placed in a body chamber, allowing the application of pseudorandom noise pressure variations to the chest and abdomen. The flow at the airway opening was measured in a small chamber connected to the body chamber. The short-term reproducibility of the transfer impedance was tested by repeated measurements in nine Wistar rats. The mean coefficient of variation for the impedance did not exceed 10%. The impedance data were analyzed using different models of the respiratory system of which a three-coefficient resistance-inertance-compliance model provided the most reliable estimates of respiratory resistance (Rrs) and inertance (Irs). The model response, however, departed systematically from the measured impedance. A nine-coefficient model best described the data. Optimization of this model provided estimates of the respiratory tissue coefficients and upper and lower airway coefficients. Rrs with this model was 13.6 +/- 1.0 (SD) kPa.l-1.s, Irs was 14.5 +/- 1.3 Pa.l-1.s2, and tissue compliance (Cti) was 2.5 +/- 0.5 ml/kPa. The intraindividual coefficient of variation for Rrs and Irs was 11 and 18%, respectively. Because most of the resistance and inertance was located in the airways (85 and 81% of Rrs and Irs, respectively), the partitioning in tissue and upper and lower airway components was rather poor. Our values for Rrs and Irs of conscious rats were much lower and our values for Cti were higher than previously reported values for anesthetized rats.  相似文献   

3.
In five spontaneously breathing anesthetized subjects [halothane approximately 1 minimal alveolar concentration (MAC), 70% N2O, 30% O2], flow, changes in lung volume, and esophageal and airway opening pressure were measured in order to partition the elastance (Ers) and flow resistance (Rrs) of the total respiratory system into the lung and chest wall components. Ers averaged (+/- SD) 23.0 +/- 4.9 cmH2O X l-1, while the corresponding values of pulmonary (EL) and chest wall (EW) elastance were 14.3 +/- 3.2 and 8.7 +/- 3.0 cmH2O X l-1, respectively. Intrinsic Rrs (upper airways excluded) averaged 2.3 +/- 0.2 cmH2O X l-1 X s, the corresponding values for pulmonary (RL) and chest wall (RW) flow resistance amounting to 0.8 +/- 0.4 and 1.5 +/- 0.5 cmH2O X l-1 X s, respectively. Ers increased relative to normal values in awake state, mainly reflecting increased EL. Rw was higher than previous estimates on awake seated subjects (approximately 1.0 cmH2O X l-1 X s). RL was relatively low, reflecting the fact that the subjects had received atropine (0.3-0.6 mg) and were breathing N2O. This is the first study in which both respiratory elastic and flow-resistive properties have been partitioned into lung and chest wall components in anesthetized humans.  相似文献   

4.
Forced oscillatory impedance of the respiratory system at low frequencies   总被引:6,自引:0,他引:6  
Respiratory mechanical impedances were determined during voluntary apnea in five healthy subjects, by means of 0.25- to 5-Hz pseudo/random oscillations applied at the mouth. The total respiratory impedance was partitioned into pulmonary (ZL) and chest wall components with the esophageal balloon technique; corrections were made for the upper airway shunt impedance and the compressibility of alveolar gas. Neglect of these shunt effects did not qualitatively alter the frequency dependence of impedances but led to underestimations in impedance, especially in the chest wall resistance (Rw), which decreased by 20-30% at higher frequencies. The total resistance (Rrs) was markedly frequency dependent, falling from 0.47 +/- 0.06 (SD) at 0.25 Hz to 0.17 +/- 0.01 at 1 Hz and 0.15 +/- 0.01 kPa X l-1 X s at 5 Hz. The changes in Rrs were caused by the frequency dependence of Rw almost exclusively between 0.25 and 2 Hz and in most part between 2 and 5 Hz. The effective total respiratory (Crs,e) and pulmonary compliance were computed with corrections for pulmonary inertance derived from three- and five-parameter model fittings of ZL. Crs,e decreased from the static value (1.03 +/- 0.18 l X kPa-1) to a level of approximately 0.35 l X kPa-1 at 2-3 Hz; this change was primarily caused by the frequency-dependent behavior of chest wall compliance.  相似文献   

5.
Low-frequency respiratory mechanical impedance in the rat   总被引:1,自引:0,他引:1  
A modified forced oscillatory technique was used to determine the respiratory mechanical impedances in anesthetized, paralyzed rats between 0.25 and 10 Hz. From the total respiratory (Zrs) and pulmonary impedance (ZL), measured with pseudorandom oscillations applied at the airway opening before and after thoracotomy, respectively, the chest wall impedance (ZW) was calculated as ZW = Zrs - ZL. The pulmonary (RL) and chest wall resistances were both markedly frequency dependent: between 0.25 and 2 Hz they contributed equally to the total resistance falling from 81.4 +/- 18.3 (SD) at 0.25 Hz to 27.1 +/- 1.7 kPa.l-1 X s at 2 Hz. The pulmonary compliance (CL) decreased mildly, from 2.78 +/- 0.44 at 0.25 Hz to 2.36 +/- 0.39 ml/kPa at 2 Hz, and then increased at higher frequencies, whereas the chest wall compliance declined monotonously from 4.19 +/- 0.88 at 0.25 Hz to 1.93 +/- 0.14 ml/kPa at 10 Hz. Although the frequency dependence of ZW can be interpreted on the basis of parallel inhomogeneities alone, the sharp fall in RL together with the relatively constant CL suggests that at low frequencies significant losses are imposed by the non-Newtonian resistive properties of the lung tissue.  相似文献   

6.
In six spontaneously breathing anesthetized subjects [halothane approximately 1 maximum anesthetic concentration (MAC), 70% N2O-30% O2], we measured flow (V), volume (V), and tracheal pressure (Ptr). With airway occluded at end-inspiration tidal volume (VT), we measured Ptr when the subjects relaxed the respiratory muscles. Dividing relaxed Ptr by VT, total respiratory system elastance (Ers) was obtained. With the subject still relaxed, the occlusion was released to obtain the V-V relationship during the ensuing relaxed expiration. Under these conditions, the expiratory driving pressure is V X Ers, and thus the pressure-flow relationship of the system can be obtained. By subtracting the flow resistance of equipment, the intrinsic respiratory flow resistance (Rrs) is obtained. Similar measurements were repeated during anesthesia-paralysis (succinylcholine). Ers averaged 23.9 +/- 4 (+/- SD) during anesthesia and 21 +/- 1.8 cmH2O X 1(-1) during anesthesia-paralysis. The corresponding values of intrinsic Rrs were 1.6 +/- 0.7 and 1.9 +/- 0.9 cmH2O X 1(-1) X s, respectively. These results indicate that Ers increases substantially during anesthesia, whereas Rrs remains within the normal limits. Muscle paralysis has no significant effect on Ers and Rrs. We also provide the first measurements of inspiratory muscle activity and related negative work during spontaneous expiration in anesthetized humans. These show that 36-74% of the elastic energy stored during inspiration is wasted in terms of negative inspiratory muscle work.  相似文献   

7.
Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.  相似文献   

8.
9.
In eight anesthetized and tracheotomized rabbits, we studied the transfer impedances of the respiratory system during normocapnic ventilation by high-frequency body-surface oscillation from 3 to 15 Hz. The total respiratory impedance was partitioned into pulmonary and chest wall impedances to characterize the oscillatory mechanical properties of each component. The pulmonary and chest wall resistances were not frequency dependent in the 3- to 15-Hz range. The mean pulmonary resistance was 13.8 +/- 3.2 (SD) cmH2O.l-1.s, although the mean chest wall resistance was 8.6 +/- 2.0 cmH2O.l-1.s. The pulmonary elastance and inertance were 0.247 +/- 0.095 cmH2O/ml and 0.103 +/- 0.033 cmH2O.l-1.s2, respectively. The chest wall elastance and inertance were 0.533 +/- 0.136 cmH2O/ml and 0.041 +/- 0.063 cmH2O.l-1.s2, respectively. With a linear mechanical behavior, the transpulmonary pressure oscillations required to ventilate these tracheotomized animals were at their minimal value at 3 Hz. As the ventilatory frequency was increased beyond 6-9 Hz, both the minute ventilation necessary to maintain normocapnia and the pulmonary impedance increased. These data suggest that ventilation by body-surface oscillation is better suited for relatively moderate frequencies in rabbits with normal lungs.  相似文献   

10.
Reduced functional residual capacity (FRC) is consistently found in obese subjects. In 10 obese subjects (mean +/- SE age 49.0 +/- 6 yr, weight 128.4 +/- 8 kg, body mass index 44 +/- 3 kg/m2) without respiratory disease, we examined 1) supine changes in total lung capacity (TLC) and subdivisions, 2) whether values of total respiratory resistance (Rrs) are appropriate for mid-tidal lung volume (MTLV), and 3) estimated resistance of the nasopharyngeal airway (Rnp) in both sitting and supine postures. The results were compared with those of 13 control subjects with body mass indexes of <27 kg/m2. Rrs at 6 Hz was measured by applying forced oscillation at the mouth (Rrs,mo) or the nose (Rrs,na); Rnp was estimated from the difference between sequential measurements of Rrs,mo and Rrs,na. All measurements were made when subjects were seated and when supine. Obese subjects when seated had a restrictive defect with low TLC and FRC-to-TLC ratio; when supine, TLC fell 80 ml and FRC fell only 70 ml compared with a mean supine fall of FRC of 730 ml in control subjects. Values of Rrs,mo and Rrs,na at resting MTLV in obese subjects were about twice those in control subjects in both postures. Relating total respiratory conductance (1/Rrs) to MTLV, the increase in Rrs,mo in obese subjects was only partly explained by their reduced MTLV. Rnp was increased in some obese subjects in both postures. Despite the increased extrapulmonary mass load in obese subjects, further falls in TLC and FRC when supine were negligible. Rrs,mo at isovolume was increased. Further studies are needed to examine the causes of reduced TLC and increases in Rrs,mo and sometimes in Rnp in obese subjects.  相似文献   

11.
Lung impedance was measured from 0.01 to 0.1 Hz in six healthy adults by superimposing small-amplitude forced oscillations on spontaneous breathing. Measurements were made with an almost constant-volume input (160-180 ml) or with an almost constant-flow input (20-30 ml.s-1). No significant difference was found between the two conditions. Lung resistance (RL) sharply decreased from 0.97 kPa.l-1.s at 0.01 Hz to 0.27 kPa.l-1.s at 0.03 Hz and then mildly to 0.23 kPa.l-1.s at 0.1 Hz. Lung effective compliance (CL) decreased slightly and regularly from 0.01 Hz (2.38 l.kPa-1) to 0.1 Hz (1.93 l.kPa-1). The data were analyzed using a linear viscoelastic model adapted from Hildebrandt (J. Appl. Physiol. 28:365-372, 1970) and complemented by a Newtonian resistance (R): RL = R + B/(9.2f); CL = 1/(A + 0.25B + B.log2 pi f), where f is the frequency and B/A is an index of lung tissue viscoelasticity. A good fit was generally obtained, with an average difference of 10% between the observed and predicted values. The ratio B/A was not affected by the breathing and was 10.6 and 13.6% in the constant-volume and constant-flow conditions, respectively, which agrees with Hildebrandt's observations in isolated cat lungs. R was systematically larger than the plethysmographic airway resistance, suggesting that lung tissue resistance might also include a Newtonian component.  相似文献   

12.
Flow (V), volume (V), and tracheal pressure (Ptr) were measured throughout a series of brief (100 ms) interruptions of expiratory V in six patients during anesthesia (halothane-N2O) and anesthesia-paralysis (succinylcholine). For the latter part of spontaneous expiration and throughout passive deflation during muscle paralysis, a plateau in postinterruption Ptr was observed, indicating respiratory muscle relaxation. Under these conditions, passive elastance of the total respiratory system (Ers) was determined as the plateau in postinterruption Ptr divided by the corresponding V. The pressure-flow relationship of the total system was determined by plotting the plateau in Ptr during interruption against the immediately preceding V. Ers averaged 23.5 +/- 1.9 (SD) cmH2O X l-1 during anesthesia and 25.5 +/- 5.4 cmH2O X l-1 during anesthesia-paralysis. Corresponding values of total respiratory system resistance were 2.0 +/- 0.8 and 1.9 +/- 0.6 cmH2O X l-1 X s, respectively. Respiratory mechanics determined during anesthesia paralysis using the single-breath method (W.A. Zin, L. D. Pengelly, and J. Milic-Emili, J. Appl. Physiol. 52: 1266-1271, 1982) were also similar. Early in spontaneous expiration, however, Ptr increased progressively during the period of interruption, reflecting the presence of gradually decreasing antagonistic (postinspiratory) pressure of the inspiratory muscles. In conclusion, the interrupter technique allows for simultaneous determination of the passive elastic as well as flow-resistive properties of the total respiratory system. The presence of a plateau in postinterruption Ptr may be employed as a useful and simple criterion to confirm the presence of respiratory muscle relaxation.  相似文献   

13.
This study was designed to determine the responses of lung volume and respiratory resistance (Rrs) to decreasing levels of continuous negative airway pressure (CNAP). Twenty normal subjects were studied in the basal state and under CNAP levels of -5, -10, and -15 hPa. Rrs was measured by the forced oscillation technique (4-32 Hz). End-expiratory lung volume (EELV) and tidal volume (VT) were measured by whole body plethysmography. Rrs was extrapolated to 0 Hz (R(0)) and estimated at 16 Hz (R(16)) by linear regression analysis of Rrs vs. frequency. Specific Rrs, SR(0) and SR(16), were then calculated as R(0) (EELV + VT/2) and R(16) (EELV + VT/2), respectively. EELV significantly decreased, whereas R(0), R(16), SR(0), and SR(16) significantly increased, as the CNAP level decreased (P < 0.0001 for all). At the lowest CNAP level, R(0) and R(16) reached 198 +/- 13 and 175 +/- 9% of their respective basal values. The CNAP-induced increase in R(0) was significantly higher than that in R(16) (P < 0.004). Our results demonstrate that the CNAP-induced increase in Rrs does not result from a direct lung volume effect only and strongly suggest the involvement of other factors affecting both intrathoracic and extrathoracic airway caliber.  相似文献   

14.
Total respiratory input (Zin) and transfer (Ztr) impedances were obtained from 4 to 30 Hz in 10 healthy subjects breathing air and He-O2. Zin was measured by applying pressure oscillations around the head to minimize the upper airway shunt and Ztr by applying pressure oscillations around the chest. Ztr was analyzed with a six-coefficient model featuring airways resistance (Raw) and inertance (Iaw), alveolar gas compressibility, and tissue resistance, inertance, and compliance. Breathing He-O2 significantly decreased Raw (1.35 +/- 0.32 vs. 1.74 +/- 0.49 cmH2O.l-1.s in air, P less than 0.01) and Iaw (0.59 +/- 0.33 vs. 1.90 +/- 0.44 x 10(-2) cmH2O.l-1.s2), but, as expected, it did not change the tissue coefficients significantly. Airways impedance was also separately computed by combining Zin and Ztr data. This approach demonstrated similar variations in Raw and Iaw with the lighter gas mixture. With both analyses, however, the changes in Iaw were more than what was expected from the change in density. This indicates that factors other than gas inertance are included in Iaw and reveals the short-comings of the six-coefficient model to interpret impedance data.  相似文献   

15.
The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel inhomogeneities from normal viscoelastic properties of the respiratory tissues.  相似文献   

16.
Past studies in humans and other species have revealed the presence of resonances and antiresonances, i.e., minima and maxima in respiratory system impedance (Zrs), at frequencies much higher than those commonly employed in clinical applications of the forced oscillation technique (FOT). To help understand the mechanisms behind the first occurrence of antiresonance in the Zrs spectrum, the frequency response of the rat was studied by using FOT at both low and high frequencies. We measured Zrs in both Wistar and PVG/c rats using the wave tube technique, with a FOT signal ranging from 2 to 900 Hz. We then compared the high-frequency parameters, i.e., the first antiresonant frequency (far,1) and the resistive part of Zrs at that frequency [Rrs(far,1)], with parameters obtained by fitting a modified constant-phase model to low-frequency Zrs spectra. The far,1 was 570 +/- 43 (SD) Hz and 456 +/- 16 Hz in Wistar and PVG/c rats, respectively, and it did not shift with respiratory gases of different densities (air, heliox, and a mixture of SF(6)). The far,1 and Rrs(far,1) were relatively independent of methacholine-induced bronchoconstriction but changed significantly with increasing transrespiratory pressures up to 20 cmH(2)O, in the same way as airway resistance but independently of changes to tissue parameters. These results suggest that, unlike the human situation, the first antiresonance in the rat is not primarily dependent on the acoustic dimensions of the respiratory system and can be explained by interactions between compliances and inertances localized to the airways, but this most likely does not include airway wall compliance.  相似文献   

17.
An index of airway caliber can be tracked in near-real time by measuring airway resistance (Raw) as indicated by lung resistance at 8 Hz. These measurements require the placing of an esophageal balloon. The objective of this study was to establish whether total respiratory system resistance (Rrs) could be used rather than Raw to track airway caliber, thereby not requiring an esophageal balloon. Rrs includes the resistance of the chest wall (Rcw). We used a recursive least squares approach to track Raw and Rrs at 8 Hz in seven healthy and seven asthmatic subjects during tidal breathing and a deep inspiration (DI). In both subject groups, Rrs was significantly higher than Raw during tidal breathing at baseline and postchallenge. However, at total lung capacity, Raw and Rrs became equivalent. Measured with this approach, Rcw appears volume dependent, having a magnitude of 0.5-1.0 cmH2O. l-1. s during tidal breathing and decreasing to zero at total lung capacity. When resistances are converted to an effective diameter, Rrs data overestimate the increase in diameter during a DI. Simulation studies suggest that the decrease in apparent Rcw during a DI is a consequence of airway opening flow underestimating chest wall flow at increased lung volume. We conclude that the volume dependence of Rcw can bias the presumed net change in airway caliber during tidal breathing and a DI but would not distort assessment of maximum airway dilation.  相似文献   

18.
Decay of inspiratory muscle pressure during expiration in conscious humans   总被引:1,自引:0,他引:1  
In eight conscious spontaneously breathing adults we studied the decay of pressure developed by the inspiratory muscles during expiration (PmusI). PmusI was obtained according to the following equation: PmusI(t) = Ers X V(t) - Rrs X V(t), where V is volume and V is flow at any instant t during spontaneous expiration, and Ers and Rrs are, respectively, the passive elastance and resistance of the total respiratory system. Ers was determined with the relaxation method, and resistance with the interrupter method. All subjects showed marked braking of expiratory flow by PmusI. The mean time for PmusI to reduce to 50 and 0% amounted, respectively, to 23 and 79% of expiratory time. During expiration, 24-55% of the elastic energy stored during inspiration was used as resistive work and the remainder (45-76%) as negative work.  相似文献   

19.
Respiratory impedance may be studied by measuring airway flow (Vaw) when pressure is varied at the mouth (input impedance) or around the chest (transfer impedance). A third possibility, which had not been investigated so far, is to apply pressure variations simultaneously at the two places, that is to vary ambient pressure (Pam). This provides respiratory impedance to ambient pressure changes (Zapc = Vaw/Pam). In that situation airway impedance (Zaw) and tissue impedance (Zt) are mechanically in parallel, and both are in series with alveolar gas impedance (Zg): Zapc = Zaw + Zg + Zaw.Zg/Zt. We assessed the frequency dependence of Zapc from 0.05 to 2 Hz in nine normal subjects submitted to sinusoidal Pam changes of 2-4 kPa peak to peak. The real part of Zapc (Rapc) was of 6.2 kPa.1(-1).s at 0.05 Hz and decreased to 1.9 kPa.1(-1).s at 2 Hz. Similarly the effective compliance (Capc), computed from the imaginary part of Zapc, decreased from 0.045 1.kPa-1 at 0.05 Hz to 0.027 1.kPa-1 at 2 Hz. Breathing against an added resistance of 0.46 kPa.1(-1).s exaggerated the negative frequency dependence of both Rapc and Capc. When values of airway resistance and inertance derived from transfer impedance data were introduced, Zapc was used to compute effective tissue resistance (Rt) and compliance (Ct). Rt was found to decrease from 0.32 to 0.15 kPa.1(-1).s and Ct from 1.11 to 0.64 1.kPa-1 between 0.25 and 2 Hz. Ct was slightly lower with the added resistance. These results are in good agreement with the data obtained by other approaches.  相似文献   

20.
Airway resistance (Raw) measurement with continuous recording was studied in 10 awake cats. The method used was a transducer enabling to incorporate additive resistances by rotating blind. The signals were processed electronically. Part of the measuring device in a pneumotachographic transducer (measurement V') and VT is obtained by integrating V'. Values for mean Raw were read in both parts of the breathing cycle. The experiments have shown that the method could be used in awake cats. Values for mean Rawinsp. were 1.3 +/- 0.24 kPa.l-1.s, Rawexp. of 1.43 +/- 0.26 kPa.l-1.s, end-inspiratory Raw was 1.44 +/- 0.33 kPa.l-1.s and end-expiratory Raw of 1.49 +/- 0.31 kPa.l-1.s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号