首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogeny of Celastraceae tribe Celastreae, which includes about 350 species of trees and shrubs in 15 genera, was inferred in a simultaneous analysis of morphological characters together with nuclear (ITS and 26S rDNA) and plastid (matK, trnL-F) genes. A strong correlation was found between the geography of the species sampled and their inferred relationships. Species of Maytenus and Gymnosporia from different regions were resolved as polyphyletic groups. Maytenus was resolved in three lineages (New World, African, and Austral-Pacific), while Gymnosporia was resolved in two lineages (New World and Old World). Putterlickia was resolved as nested within the Old World Gymnosporia. Catha edulis (qat, khat) was resolved as sister to the clade of Allocassine, Cassine, Lauridia, and Maurocenia. Gymnosporia cassinoides, which is reportedly chewed as a stimulant in the Canary Islands, was resolved as a derived member of Gymnosporia and is more closely related to Lydenburgia and Putterlickia than it is to Catha. Therefore, all eight of these genera are candidates for containing cathinone- and/or cathine-related alkaloids.  相似文献   

2.
Speciation in Pyricularia inferred from multilocus phylogenetic analysis   总被引:1,自引:0,他引:1  
Pyricularia isolates from various host plants were subjected to a multilocus phylogenetic analysis based on rDNA-ITS, actin, β-tubulin, and calmodulin loci. A combined gene tree resolved seven groups with 100 % BS support, suggesting that they are monophyletic groups supported concordantly by all four loci. By incorporating biological and morphological species criteria, each of the seven groups was considered to be a current species. However, phylogenetic relationships among these species were unresolved in the single-gene trees and in the combined tree. Furthermore, the transition from concordance to conflict occurred more than once in the combined gene tree. They were interpreted by assuming that Pyricularia has evolved through repeated species radiation. The transition point other than the current species limit was considered to be the limit of the former species.  相似文献   

3.
Gulls (Aves: Laridae) constitute a recent and cosmopolite family of well-studied seabirds for which a robust phylogeny is needed to perform comparative and biogeographical analyses. The present study, the first molecular phylogeny of all Larids species (N=53), is based on a combined segment of mtDNA (partial cytochrome b and control region). We discuss our phylogenetic tree in the light of previous suggestions based on morphological, behavioral, and plumage characters. Although the phylogeny is not fully resolved, it highlights several robust species groups and confirms or identifies for the first time some sister relationships that had never been suggested before. The Dolphin Gull (Leucophaeus scoresbii) for instance, is identified as the sister species of the Grey Gull (Larus modestus) and the Ross's Gull (Rhodostethia rosea) forms a monophyletic group with the Little Gull (Larus minutus). Our results clearly demonstrate that the genus Larus as currently defined is not monophyletic, since current taxonomy of gulls is based on the use of convergent phenotypic characters. We propose a new systematic arrangement that better reflects their evolutionary history.  相似文献   

4.
GlyptothoraxBlyth (1860) is the most species-diverse and widely-distributed genus in the Sisoridae, but few studies have examined monophyly of the genus and phylogenetic relations within it. We used the nuclear RAG2 gene and mitochondrial COI and Cyt b genes from 50 of the approximately 70 species to examine monophyly of Glyptothorax and phylogenetic relationships within the genus. Molecular phylogenetic trees were constructed using maximum parsimony, maximum likelihood and Bayesian inference methods. All methods strongly supported monophyly of Glyptothorax, with Bagarius as its sister group. Both analyses of two- and three-gene datasets recovered nine major subclades of Glyptothorax, but some internal nodes remained poorly resolved. The phylogenetic relationships within the genus and existing taxonomic problems are discussed.  相似文献   

5.
The phylogeny of Celastraceae tribe Euonymeae (∼230 species in eight genera in both the Old and New Worlds) was inferred using morphological characters together with plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. Tribe Euonymeae has been defined as those genera of Celastraceae with generally opposite leaves, isomerous carpels, loculicidally dehiscent capsules, and arillate seeds (except Microtropis). Euonymus is the most diverse (129 species) and widely cultivated genus in the tribe. We infer that tribe Euonymeae consists of at least six separate lineages within Celastraceae and that a revised natural classification of the family is needed. Microtropis and Quetzalia are inferred to be distinct sister groups that together are sister to Zinowiewia. The endangered Monimopetalum chinense is an isolated and early derived lineage of Celastraceae that represents an important component of phylogenetic diversity within the family. Hedraianthera is sister to Brassiantha, and we describe a second species (Brassiantha hedraiantheroides A.J. Ford) that represents the first reported occurrence of this genus in Australia. Euonymus globularis, from eastern Australia, is sister to Menepetalum, which is endemic to New Caledonia, and we erect a new genus (Dinghoua R.H. Archer) for it. The Madagascan species of Euonymus are sister to Pleurostylia and recognized as a distinct genus (Astrocassine ined.). Glyptopetalum, Torralbasia, and Xylonymus are all closely related to Euonymus sensu stricto and are questionably distinct from it. Current intrageneric classifications of Euonymus are not completely natural and require revision.  相似文献   

6.
Phylogenetic relationships of the Malagasy and Australasian rainbowfishes are investigated using 4394 characters derived from five mitochondrial genes (12S, 16S, tRNA-Valine, ND5, and COI), three nuclear genes (28S, histone H3, and TMO-4c4), and 102 morphological transformations. This study represents the first phylogenetic analysis of the endemic Malagasy family Bedotiidae and includes a nearly complete taxonomic review of all nominal species, as well as numerous undescribed species. Simultaneous analysis of the molecular and morphological datasets results in two equally most parsimonious trees. Results indicate that Bedotiidae (Bedotia+Rheocles) and Bedotia are monophyletic, whereas Rheocles is paraphyletic with the inclusion of two recently described species from northeastern Madagascar, R. vatosoa, and R. derhami. Rheocles vatosoa and R. derhami are sister taxa, and this clade is recovered as the sister group to Bedotia. The remaining species of Rheocles are not sexually dimorphic and comprise a clade that is recovered as the sister group to Bedotia+(R. derhami+R. vatosoa), all of which are sexually dichromatic, and sexually dimorphic for pigmentation and fin development. Three geographically distinct clades are recovered within Bedotia, one comprising species with distributions ranging from mid- to southeastern Madagascar, another including species restricted to eastern drainages north of the Masoala Peninsula, and a third comprising taxa with distributions extending from the Masoala Peninsula south to the Ivoloina River. The Australian/New Guinean melanotaeniids are monophyletic and are recovered as the sister group to Bedotiidae. The Australasian Telmatherinidae and Pseudomugilidae comprise a clade that is recovered as the sister group to the Melanotaeniidae-Bedotiidae clade. This sister-group relationship between Malagasy bedotiids and a clade restricted to Australia-New Guinea, and the absence of a close relationship between bedotiids and African or Mascarene atheriniforms, is congruent with the break-up of Gondwana, not a scenario reliant on Cenozoic trans-oceanic dispersal. Finally, results of the phylogenetic analysis indicate that Atheriniformes is polyphyletic and further corroborate recent morphological hypotheses, which have recovered Bedotiidae in a derived position within Atherinoidei.  相似文献   

7.
This study used molecular data (mitochondrial 16s and COI) for the first time to explore evolutionary relationships among species of the pinnotherid crab genus Austinixa. Low levels of phylogenetic signal were detected for COI. High levels of phylogenetic signal were detected for 16s, indicating it is a more useful marker for inferring species level phylogenies in Austinixa. Phylogeographic patterns among species of Austinixa are consistent with allopatric speciation due to numerous climatic and oceanographic fluctuations during the last 5-6 my. In addition, all but two species have been derived since the closure of the Isthmus of Panama, a pattern consistent with hypotheses that the marine biota of the Caribbean and southeastern North America underwent a pulse of biotic turnover within the last 2-3 my. Austinixa aidae and Austinixa hardyi had identical 16s sequences, and differed by only 2 bp in COI, raising questions about the validity of A. hardyi as a distinct species.  相似文献   

8.
9.
A higher-level phylogenetic classification of the Fungi   总被引:3,自引:3,他引:0  
《Mycological Research》2007,111(5):509-547
A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. The Chytridiomycota is retained in a restricted sense, with Blastocladiomycota and Neocallimastigomycota representing segregate phyla of flagellated Fungi. Taxa traditionally placed in Zygomycota are distributed among Glomeromycota and several subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotina. Microsporidia are included in the Fungi, but no further subdivision of the group is proposed. Several genera of ‘basal’ Fungi of uncertain position are not placed in any higher taxa, including Basidiobolus, Caulochytrium, Olpidium, and Rozella.  相似文献   

10.
We conducted phylogenetic analyses using two DNA sequence data sets derived from matK, the maturase-coding gene located in an intron of the plastid gene trnK, and the internal transcribed spacer region of 18S–26S nuclear ribosomal DNA to examine relationships in subtribe Aeridinae (Orchidaceae). Specifically, we investigated (1) phylogenetic relationships among genera in the subtribe, (2) the congruence between previous classifications of the subtribe and the phylogenetic relationships inferred from the molecular data, and (3) evolutionary trends of taxonomically important characters of the subtribe, such as pollinia, a spurred lip, and a column foot. In all, 75 species representing 62 genera in subtribe Aeridinae were examined. Our analyses provided the following insights: (1) monophyly of subtribe Aeridinae was tentatively supported in which 14 subclades reflecting phylogenetic relationships can be recognized, (2) results are inconsistent with previous classifications of the subtribe, and (3) repeated evolution of previously emphasized characters such as pollinia number and apertures, length of spur, and column foot was confirmed. It was found that the inconsistencies are mainly caused by homoplasy of these characters. At the genus level, Phalaenopsis, Cleisostoma, and Sarcochilus are shown to be non-monophyletic.  相似文献   

11.
Aphis is the largest aphid genus in the world and contains several of the most injurious aphid pests. It is also the most reluctant aphid genus to any comprehensive taxonomic treatment: while most species are easily classified into "species groups" that form well defined entities, numerous species within these groups are difficult to tell apart morphologically and identification keys remain ambiguous and mostly rely on host plant affiliation. In this paper, we used partial sequences of COI/COII and CytB genes to reconstruct the first phylogeny of Aphis and discuss the present systematics. The monophyly of the subgenus Bursaphis and of the tree major species groups, Black aphid, Black backed aphid and frangulae-like species was recovered by all phylogenetic analyses. However our data suggested that the nominal subgenus was not monophyletic. Relationships between major species groups were often ambiguous but "Black" and "Black backed" species groups appeared as sister clades. The most striking result of this study was that our molecular data met the same limits as the morphological characters used in classifications: mitochondrial DNA did not allow the differentiation of species that are difficult to identify. Further, interspecies relationships within groups of species for which taxonomic treatment is difficult stayed unresolved. This suggests that species delineation in the genus Aphis is often ambiguous and that diversification might have been a rapid process.  相似文献   

12.
We describe the first complete mitochondrial genome sequence from a representative of the insect order Coleoptera, the flour beetle Tribolium castaneum. The 15,881 bp long Tribolium mitochondrial genome encodes 13 putative proteins, two ribosomal RNAs and 22 tRNAs canonical for animal mitochondrial genomes. Their arrangement is identical to that in Drosophila melanogaster, which is considered ancestral for insects and crustaceans (Boore et al., 1998; Hwang, et al., 2001a). Nucleotide composition, amino acid composition, and codon usage fall within the range of values observed in other insect mitochondrial genomes. Most notable features are the use of TCT as tRNA(Ser(AGN)) anticodon instead of GCT, which is used in most other arthropod species, and the relative scarcity of special sequence motifs in the 1431 bp long control region. Phylogenetic analysis confirmed resolving power in the conserved regions of the mitochondrial proteome regarding diversification events, which predate the emergence of pterygote insects, while little resolution was obtained at the level of basal perygote diversification. The partition of faster evolving amino acid sites harbored strong support for joining Lepidoptera with Diptera, which is consistent with a monophyletic Mecopterida.  相似文献   

13.
The phylogenetic relationships among 12 genera of treefrogs (Family, Rhacophoridae), were investigated based on a large sequence data set, including five nuclear (brain-derived neurotrophic factor, proopiomelanocortin, recombination activating gene 1, tyrosinase, rhodopsin) and three mitochondrial (partial 12S and 16S ribosomal RNA and the complete valine t-RNA) genes. Phylogenetic analysis of the nuclear gene sequences resolved three major clades. The first group included Philautus, Pseudophilautus, Kurixalus, Gracixalus, and Theloderma moloch; Pseudophilautus and Kurixalus were sister taxa. The second group consisted of Nyctixalus and Theloderma. The third group contained Feihyla, Polypedates, Rhacophorus, and Chiromantis vittatus; Polypedates and Feihyla were sister taxa. Analyses of the nuclear and mitochondrial genes supported the following results: (1) Genus Liuixalus formed the sister group of all other rhacophorines. (2) Philautus, Theloderma, and Chiromantis were not resolved as monophyletic genera. Four groups, including Philautus ocellatus and P. hainanus, P. longchuanensis and P. gryllus, P. banaensis, and P. quyeti nested well within the genera Liuixalus, Pseudophilautus, Kurixalus, and Gracixalus, respectively. (3) Theloderma moloch and Chiromantis vittatus did not cluster with other species of Theloderma and Chiromantis, respectively. Foam nesting evolved only once, as did laying eggs in a jelly-like matrix containing some bubbles. Terrestrial direct development evolved twice in the Rhacophoridae.  相似文献   

14.
15.
With modified DNA extraction and purification protocols, the complete cytochrome b gene sequences (1140 bp) were determined from degraded museum specimens. Molecular analysis and morphological examination of cranial characteristics of the giant flying squirrels of Petaurista philippensis complex (P. grandis, P. hainana, and P. yunanensis) and other Petaurista species yielded new insights into long-standing controversies in the Petaurista systematics. Patterns of genetic variations and morphological differences observed in this study indicate that P. hainana, P. albiventer, and P. yunanensis can be recognized as distinct species, and P. grandis and P. petaurista are conspecific populations. Phylogenetic relationships reconstructed by using parsimony, likelihood, and Bayesian methods reveal that, with P. leucogenys as the basal branch, all Petaurista groups formed two distinct clades. Petaurista philippensis, P. hainana, P. yunanensis, and P. albiventer are clustered in the same clade, while P. grandis shows a close relationship to P. petaurista. Deduced divergence times based on Bayesian analysis and the transversional substitution at the third codon suggest that the retreating of glaciers and upheavals or movements of tectonic plates in the Pliocene-Pleistocene were the major factors responsible for the present geographical distributions of Petaurista groups.  相似文献   

16.
Carla A.  Hass  S. Blair  Hedges 《Journal of Zoology》1991,225(3):413-426
Antisera to serum albumins from five West Indian species of the frog genus Eleutheroductylus were prepared, and the reciprocal immunological distances (IDs) obtained were used to provide a time frame for the evolution of this group in the West Indies. One-way IDS were obtained to 25 additional species within the genus, with emphasis on those from the West Indies. These immunological data support both a recent classification of Eleutheroductylus based on an analysis of slow-evolving allozyme loci, and the monophyly of the 17 native Jamaican species as indicated by a more comprehensive electrophoretic study. This is in contrast to the results of morphological studies supporting multiple invasions of Jamaica by Eleutherodactylus . Within the subgenus Euhyas , IDS ranged from6–27 between Jamaican species, whereas between species on different islands the range was29–67. The subgenus Syrrhophus in southern North America was found to be the sister group to the subgenus Euhyus , a western Caribbean clade. Pelorius , a subgenus restricted to Hispaniola, was found to be the sister group of the subgenus Eleutheroductylus in the West Indies. The largest IDs obtained for West Indian species were those between the two major groups, the subgenera Eleutheroductylus and Euhyas .
The albumin immunological clock for Eleutheroductylus was calibrated with three events in the geologic history of the Caribbean: the breakup of the proto-Antilles (65-75 million years before present [mybp]), the emergence of Jamaica (20-30 mybp), and the uplift of the Blue Mountains in Jamaica (5-10 mybp). Immunological distances corresponding to those events yield a calibration of 1 ID=0.60 million years (my), the same as that previously obtained for other groups of amphibians and thus supports the use of albumin immunological distance as a molecular chronometer in the genus Eleutherodactylus  相似文献   

17.
18.
A phylogeny of the species of the nase genus Chondrostoma was constructed from a complete mitochondrial cytochrome b gene (1140 bp). Molecular phylogeny was used to revise the current systematics of this group, and to infer a biogeographical model of the Mediterranean area during the Cenozoic period. We confirmed the monophyly of the genus Chondrostoma, and defined seven different lineages within it: Polylepis, Arcasii, Lemmingii, Toxostoma, Nasus, C. genei, and C. soetta. The separation of main lineages within Chondrostoma occurred in the Middle-Upper Miocene, approximately 11 million years ago, while the greatest species radiation took place in the Pliocene close to the time the current drainages system were created. It is unlikely that this genus experienced an extensive dispersal during the Messinian, in the Lago-Mare Phase. Given the level of current knowledge, a biogeographical model constructed on the basis of vicariant events seems more realistic than does a dispersalist model.  相似文献   

19.
To investigate the genetic diversity between the populations of woolly flying squirrels (Eupetaurus) from the eastern and western extremes of the Himalayas, partial mitochondrial cytochrome b gene sequences (390-810 bp) that were determined from the museum specimens were analyzed using maximum parsimony (MP) and maximum likelihood (ML) methods. The molecular data reveal that the two specimens that were collected in northwestern Yunnan (China) are members of the genus Eupetaurus. Reconstructed phylogenetic relationships show that the populations of Eupetaurus in the eastern and western extremes of the Himalayas are two distinct species with significant genetic differences (12%) and diverged about 10.8 million years ago. Eupetaurus is significantly different from Petaurista and Pteromys. The level of estimated pairwise-sequence divergence observed between Eupetaurus and Petaurista or Pteromys is greater than that observed between Eupetaurus and Trogopterus, Belomys, Glaucomys, or Hylopetes. Considering the divergence time of the two Eupetaurus groups, the glaciations and the uplift of the Himalayas and Qinghai-Tibet plateau during the Pliocene-Pleistocene period might be the major factors affecting the present distribution of Eupetaurus along the Himalayas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号