首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

2.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

3.
The involvement of an outer membrane transport component for vitamin B12 uptake in Salmonella typhimurium, analogous to the btuB product in Escherichia coli, was investigated. Mutants of S. typhimurium selected for resistance to bacteriophage BF23 carried mutations at the btuB locus (butBS) (formerly called bfe, at the analogous map position as the E. coli homolog) and were defective in high-affinity vitamin B12 uptake. The cloned E. coli btuB gene (btuBE) hybridized to S. typhimurium genomic DNA and restored vitamin B12 transport activity to S. typhimurium btuBS mutants. An Mr-60,000 protein in the S. typhimurium outer membrane was repressed by growth with vitamin B12 and was eliminated in a btuBS mutant. The btuBS product thus appears to play the same role in vitamin B12 transport by S. typhimurium as does the E. coli btuBE product. A second vitamin B12 transport system that is not present in E. coli was found by cloning a fragment of S. typhimurium DNA that complemented btuB mutants for vitamin B12 utilization. In addition to this plasmid with a 6-kilobase insert of S. typhimurium DNA, vitamin B12 utilization by E. coli btuB strains required the btuC and btuD products, necessary for transport across the cytoplasmic membrane, but not the btuE or tonB product. The plasmid conferred low levels of vitamin B12-binding and energy-dependent transport activity but not susceptibility to phage BF23 or utilization of dicyanocobinamide. The cloned S. typhimurium DNA encoding this new transport system did not hybridize to the btuBE gene or to E. coli chromosomal DNA and therefore does not carry the S. typhimurium btuBS locus. Increased production of an Mr -84,000 polypeptide associated with the outer membrane was seen. The new locus appears to be carried on the large plasmid in most S. typhimurium strains. Thus S. typhimurium possesses both high- and low-affinity systems for uptake of cobalamins across the outer membrane.  相似文献   

4.
Ferrichrome-promoted iron uptake in Escherichia coli K12 is strictly dependent upon the tonA gene product, a 'minor' outer membrane protein. By selection for mutants of E. coli resistant to phages which require 'major' outer membrane proteins as receptors, strains with pronounced protein deficiencies were constructed. Such strains were tested for anomalous behaviour of ferrichrome transport. No significant differences in iron uptake were detected in E. coli K12 strains with markedly reduced amounts of protein I. However, a reduction in the initial velocity (up to 40%) was observed in E. coli deficient in outer membrane protein II. This difference was only evident when cells were grown under iron-starvation conditions; it was abolished when cells were grown in rich medium. Kinetic parameters for ferrichrome transport were determined for maximum velocity but for Km; double reciprocal plots showed a biphasic nature, probably attributable to a limited number of outer membrane binding sites and to the multi-component nature of the ferrichrome-iron transport system.  相似文献   

5.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

6.
We examined the effect of diethyl pyrocarbonate (DEPC), a histidine-specific reagent, on the H+/organic cation antiport system in brush-border membrane vesicles isolated from the rat renal cortex. Pretreatment of membrane vesicles with DEPC resulted in the inhibition of tetraethylammonium transport. This inhibition was reversed by subsequent treatment with hydroxylamine, but not with dithiotreitol. In contrast, the uptake of p-aminohippurate, a typical organic anion, was not inhibited by DEPC pretreatment. In the absence of an H+ gradient, pretreatment with DEPC inhibited the uptake of tetraethylammonium at pH 6.0-7.0, but not at pH 7.5. The Vmax value of tetraethylammonium uptake at pH 7.0 was decreased without any change in the Km value, but the kinetic parameters at pH 7.5 were unchanged. Unlabeled tetraethylamonium did not protect against the inhibition by DEPC. These results suggest that histidine residues in the organic cation carrier are essential for transport at acidic and neutral pH values, but not at alkaline pH values, and that histidine residues play an important role as regulatory sites in the H+/organic cation antiport system rather than as binding sites for organic cations.  相似文献   

7.
A cloned fragment of Salmonella typhimurium DNA complemented the defect in cobalamin uptake of Escherichia coli or S. typhimurium btuB mutants, which lack the outer membrane high-affinity transport protein. This DNA fragment did not carry btuB and was derived from the 90-kb plasmid resident in S. typhimurium strains. The cobalamin transport activity engendered by this plasmid had substantially lower affinity and activity than that conferred by btuB. Complementation behavior and maxicell analyses of transposon insertions showed that the cloned fragment encoded five polypeptides, at least two of which were required for complementation activity. The nucleotide sequence of the coding region for one of these polypeptides, an outer membrane protein of about 84,000 Da, was determined. The deduced polypeptide had properties typical of outer membrane proteins, with an N-terminal signal sequence and a predicted preponderance of beta structure. This outer membrane protein had extensive amino acid sequence homology with PapC and FaeD, two E. coli outer membrane proteins involved in the export and assembly of pilus and fimbria subunits on the cell surface. This homology raises the likelihood that the observed cobalamin transport did not result from the production of an authentic transport system but that overexpression of one or more outer membrane proteins allowed leakage of cobalamins through the perturbed outer membrane. These results also suggest that the 90-kb plasmid carries genes encoding an adherence mechanism.  相似文献   

8.
The hOCTN1 (human organic cation transporter 1) overexpressed in Escherichia coli and purified by Ni-chelating chromatography has been reconstituted in liposomes by detergent removal with a batch-wise procedure. The reconstitution was optimized with respect to the protein concentration, the detergent/phospholipid ratio and the time of incubation with Amberlite XAD-4 resin. Time-dependent [(14)C]tetraethylammonium, [(3)H]carnitine or [(3)H]ergothioneine uptake was measured in proteoliposomes with activities ratios of 8:1.3:1 respectively. Optimal activity was found at pH 8.0. The transport depended on intraliposomal ATP. [(14)C]tetraethylammonium transport was inhibited by several compounds. The most effective were acetyl-choline and γ-butyrobetaine, followed by acetylcarnitine and tetramethylammonium. Reagents such as pyridoxal 5-phosphate, MTSES [sodium (2-sulfonatoethyl) methanethiosulfonate] and mercurials strongly inhibited the transport. From kinetic analysis of tetraethylammonium transport a K(m) of 0.77 mM was calculated. Acetylcholine and γ-butyrobetaine behaved as competitive inhibitors of TEA (tetraethylammonium) transport with K(i) values of 0.44 and 0.63 mM respectively.  相似文献   

9.
The effect of N-ethylmaleimide (NEM), an irreversible sulfhydryl modifying reagent, on the transport of organic cations in the renal basolateral membrane was examined. The studies were conducted examining the exchange of [3H]tetraethylammonium (TEA) for unlabeled TEA in basolateral membrane vesicles isolated from the outer cortex of rabbit kidneys. NEM inactivated TEA transport in a dose-dependent fashion with an IC50 value of 260 microM. The rate of TEA transport inactivation followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 4.0. The data imply that inactivation involves the binding of at least four molecules of NEM per active transport unit. This is most consistent with the presence of four sulfhydryl groups at this site. The substrate TEA displayed a dose-dependent enhancement of NEM inactivation, with 50% enhancement occurring at 365 microM TEA. Another organic cation, N1-methylnicotinamide, known to share a common transport mechanism with the TEA/TEA exchanger is also capable of increasing the reactivity of sulfhydryl groups to NEM. These results demonstrate that there are essential sulfhydryl groups for organic cation transport in the basolateral membrane. In addition, the capability of organic cations to alter the susceptibility to sulfhydryl modification suggests that these groups may have a dynamic role in the transport process.  相似文献   

10.
We examined the pH sensitivity of the H+/organic cation antiport system in brush-border membranes isolated from rat renal cortex. The uptake of tetraethylammonium, a typical organic cation, in the absence of an H+ gradient had a marked pH dependence with an optimum pH of 7.0, while the uptake of p-aminohippurate, an organic anion, and D-glucose was almost consistent in the pH range of 6.0-8.0. The decreased tetraethylammonium uptake by brush-border membrane vesicles, suspended in an acidic pH buffer or an alkaline pH buffer, was completely recovered by subsequent treatment of the vesicles with a pH 7.0 buffer. The pH sensitivity of tetraethylammonium uptake was not changed in the presence of either carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore, or valinomycin (voltage-clamped condition). Kinetic parameters of tetraethylammonium uptake were changed in a pH-dependent manner, although Eadie-Hofstee plots of tetraethylammonium uptake were linear in the pH range of 6.0-8.0, indicating the existence of one mode of transport system at various pH values. At an acidic pH, the Km was increased without any change in Vmax value, compared with the values at pH 7.0. On the other hand, at an alkaline pH, the Vmax was decreased without a change in Km value. These results suggest that the H+/organic cation antiport system in renal brush-border membranes is very sensitive to pH (optimum pH of 7.0), in contrast to organic anion and D-glucose transport systems, and that pH is an important factor to regulate the activity of the H+/organic cation antiport system, as well as H+ gradient (a driving force).  相似文献   

11.
Thus far, only three channel-forming activities have been identified in the outer membrane of the yeast Saccharomyces cerevisiae mitochondria. Two of them, namely the TOM complex channel (translocase of the outer membrane) and the PSC (peptide-sensitive channel) participate in protein translocation and are probably identical, whereas a channel-forming protein called VDAC (voltage-dependent anion channel) serves as the major pathway for metabolites. The VDAC is present in two isoforms (VDAC1 and VDAC2) of which only VDAC1 has been shown to display channel-forming activity. Moreover, the permeability of VDAC1 has been reported to be limited in uncoupled mitochondria of S. cerevisiae. The presented data indicate that in S. cerevisiae-uncoupled mitochondria, external NADH, applied at higher concentrations (above 50 nmoles per 0.1 mg of mitochondrial protein), may use the TOM complex channel, besides VDAC1, to cross the outer membrane. Thus, the permeability of VDAC1 could be a limiting step in transport of external NADH across the outer membrane and might be supplemented by the TOM complex channel.  相似文献   

12.
Wu Q  Chen C  Koutalos Y 《Biophysical journal》2006,91(12):4678-4689
The visual pigment protein of vertebrate rod photoreceptors, rhodopsin, contains an 11-cis retinyl moiety that is isomerized to all-trans upon light absorption. Subsequently, all-trans retinal is released from the protein and reduced to all-trans retinol, the first step in the recycling of rhodopsin's chromophore group through the series of reactions that constitute the visual cycle. The concentration of all-trans retinol in photoreceptor outer segments can be monitored from its fluorescence. We have used two-photon excitation (720 nm) of retinol fluorescence and fluorescence recovery after photobleaching to characterize the mobility of all-trans retinol in frog photoreceptor outer segments. Retinol produced after rhodopsin bleaching moved laterally in the disk membrane bilayer with an apparent diffusion coefficient of 2.5 +/- 0.3 micro m(2) s(-1). The diffusion coefficient of exogenously added retinol was 3.2 +/- 0.5 micro m(2) s(-1). These diffusion coefficients are in close agreement with those reported for lipids, suggesting that retinol is not tightly bound to protein sites that would be diffusing much more slowly in the plane of the membrane. In agreement with this interpretation, a fluorescent-labeled C-16 fatty acid diffused laterally with a similar diffusion coefficient, 2.2 +/- 0.2 micro m(2) s(-1). Retinol also moved along the length of the rod outer segment, with an apparent diffusion coefficient of 0.07 +/- 0.01 micro m(2) s(-1), again suggesting that it is not tightly bound to proteins that would confine it to the disks. The axial diffusion coefficient of exogenously added retinol was 0.05 +/- 0.01 micro m(2) s(-1). In agreement with passive diffusion, the rate of axial movement was inversely proportional to the square of the length of the rod outer segment. Diffusion of retinol on the plasma membrane of the outer segment can readily account for the measured value of the axial diffusion coefficient, as the plasma membrane comprises approximately 1% of the total outer-segment membrane. The values of both the lateral and axial diffusion coefficients are consistent with most of the all-trans retinol in the outer segments moving unrestricted and not being bound to carrier proteins. Therefore, and in contrast to other steps of the visual cycle, there does not appear to be any specialized processing for all-trans retinol within the rod outer segment.  相似文献   

13.
Study of the bacterial membrane proteome, though in its early stages, is a field of growing interest in the search for information about nutrient transport and processing. We tested different strategies and chemical compounds to extract proteins from the membranes (inner and outer) of Acinetobacter radioresistens S13, a Gram-negative bacterium selected for its ability to degrade aromatics. A. radioresistens S13 was monitored under different growth substrate conditions, using acetate, benzoate or phenol as sole carbon source. Two-dimensional gel electrophoresis map analysis of membrane extracts from benzoate- and phenol-grown cells reveals differences versus controls (acetate-grown cultures). Primarily, a different pattern of spots was observed and, in particular, some proteins were only expressed in the presence of aromatic substrate. Among these, we detected a Na(+)/H(+) antiporter, whose function is likely to be regulation of intracellular pH, and an ABC type sugar transport system, probably involved in capsular polysaccharide translocation. We also identified other proteins, detectable in acetate-grown but over-expressed in aromatic-grown cells. These include: (1) an outer membrane protein ascribable to an OmpA-like protein, recently described in the literature as "alasan", a bioemulsifying agent involved in solubilizing and enhancing bioavailability of hydrocarbons; (2) a trimeric porin of the PhoE family also belonging to the outer membrane and involved in facilitating the transport of anions (especially phosphate); and (3) two glycosyl transferases probably involved in capsules and/or lipopolysaccharide biosynthesis. Study of the bacterial membrane proteome helps to elucidate the role of the membrane as modulable site enabling communication between internal and external environments.  相似文献   

14.
Pseudomonas aeruginosa is usually resistant to a wide variety of antibacterial agents, and it has been inferred, on the basis of indirect evidence, that this was due to the low permeability of its outer membrane. We determined the permeability of P. aeruginosa outer membrane directly, by measuring the rates of hydrolysis of cephacetrile, cephaloridine, and various phosphate esters by hydrolytic enzymes located in the periplasm. The permeability to these compounds was about 100-fold lower than in the outer membrane of Escherichia coli K-12. Also, we found that the apparent Km values for active transport of various carbon and energy source compounds were typically higher than 20 microM in P. aeruginosa, in contrast to E. coli in which the values are usually lower than 5 microM. These results also are consistent with the notion that the P. aeruginosa outer membrane indeed has a low permeability to most hydrophilic compounds and that this membrane acts as a rate limiting step in active transport processes with high Vmax values.  相似文献   

15.
Abstract The influence of various outer membrane proteins on peptide penetration through the outer membrane in Escherichia coli was assessed by determining peptide transport kinetics in wild type and outer membrane protein-deficient strains. Peptide uptake was measured in whole cells by using a fluorescamine-based assay to monitor continuously the removal of peptides from the medium. Transport data were collected and processed using a microcomputer to give overall K m and V max values for peptide transport in each strain. In the mutants, K m values were changed more markedly then V max values reflecting an alteration in diffusion through the envelope. This approach shows that porins are involved in facilitating peptide penetration and that the OmpF channel appears to be more important than either OmpC or PhoE proteins. The loss of OmpA protein also decreases outer membrane permeability towards peptides, although whether this protein forms pores itself or exists more to maintain the functional integrity of other proteins is not known.  相似文献   

16.
Mammalian auditory outer hair cells generate high-frequency mechanical forces that enhance sound-induced displacements of the basilar membrane within the inner ear. It has been proposed that the resulting cell deformation is directed along the longitudinal axis of the cell by the cortical cytoskeleton. We have tested this proposal by making direct mechanical measurements on outer hair cells. The resultant stiffness modulus along the axis of whole dissociated cells was 3 x 10(-3) N/m, consistent with previously published values. The resultant axial and circumferential stiffness moduli for the cortical lattice were 5 x 10(-4) N/m and 3 x 10(-3) N/m, respectively. Thus the cortical lattice is a highly orthotropic structure. Its axial stiffness is small compared with that of the intact cell, but its circumferential stiffness is within the same order of magnitude. These measurements support the theory that the cortical cytoskeleton directs electrically driven length changes along the longitudinal axis of the cell. The Young's modulus of the circumferential filamentous components of the lattice were calculated to be 1 x 10(7) N/m2. The axial cross-links, believed to be a form of spectrin, were calculated to have a Young's modulus of 3 x 10(6) N/m2. Based on the measured values for the lattice and intact cell cortex, an estimate for the resultant stiffness modulus of the plasma membrane was estimated to be on the order of 10(-3) N/m. Thus, the plasma membrane appears to be relatively stiff and may be the dominant contributor to the axial stiffness of the intact cell.  相似文献   

17.
The mechanism of lipopolysaccharide (LPS) transport in Gram-negative bacteria from the inner membrane to the outer membrane is largely unknown. Here, we investigated the possibility that LPS transport proceeds via a soluble intermediate associated with a periplasmic chaperone analogous to the Lol-dependent transport mechanism of lipoproteins. Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released. We demonstrate that LPS synthesized de novo in spheroplasts co-fractionated with the outer membranes and that this co-fractionation was dependent on the presence in the spheroplasts of a functional MsbA protein, the protein responsible for the flip-flop of LPS across the inner membrane. The outer membrane localization of the LPS was confirmed by its modification by the outer membrane enzyme CrcA (PagP). We conclude that a substantial amount of LPS was translocated to the outer membrane in spheroplasts, suggesting that transport proceeds via contact sites between the two membranes. In contrast to LPS, de novo synthesized phospholipids were not transported to the outer membrane in spheroplasts. Apparently, LPS and phospholipids have different requirements for their transport to the outer membrane.  相似文献   

18.
Neisseria gonorrhoeae is an obligate pathogen that hijacks iron from the human iron transport protein, holo-transferrin (Fe(2)-Tf), by expressing TonB-dependent outer membrane receptor proteins, TbpA and TbpB. Homologous to other TonB-dependent outer membrane transporters, TbpA is thought to consist of a β-barrel with an N-terminal plug domain. Previous reports by our laboratories show that the sequence EIEYE in the plug domain is highly conserved among various bacterial species that express TbpA and plays a crucial role in iron utilization for gonococci. We hypothesize that this highly conserved EIEYE sequence in the TbpA plug, rich in hard oxygen donor groups, binds with Fe(3+) through the transport process across the outer membrane through the β-barrel. Sequestration of Fe(3+) by the TbpA-plug supports the paradigm that the ferric iron must always remain chelated and controlled throughout the transport process. In order to test this hypothesis here we describe the ability of both the recombinant wild-type plug, and three small peptides that encompass the sequence EIEYE of the plug, to bind Fe(3+). This is the first report of the expression/isolation of the recombinant wild-type TbpA plug. Although CD and SUPREX spectroscopies suggest that a non-native structure is observed for the recombinant plug, fluorescence quenching titrations indicate that the wild-type recombinant TbpA plug binds Fe (3+) with a conditional log K(d) = 7 at pH 7.5, with no evidence of binding at pH 6.3. A recombinant TbpA plug with mutated sequence (NEIEYEN → NEIAAAN) shows no evidence of Fe(3+) binding under our experimental set up. Interestingly, in silico modeling with the wild-type plug also predicts a flexible loop structure for the EIEYE sequence under native conditions which once again supports the Fe(3+) binding hypothesis. These in vitro observations are consistent with the hypothesis that the EIEYE sequence in the wild-type TbpA plug binds Fe(3+) during the outer membrane transport process in vivo.  相似文献   

19.
We studied the effect of gentamicin on Na+-dependent D-glucose transport into brush-border membrane vesicles isolated from rabbit kidney outer cortex (early proximal tubule) and outer medulla (late proximal tubule) in vitro. We found the same osmotically active space and nonspecific binding between control and gentamicin-treated brush-border membrane vesicles. There was no difference in the passive permeability properties between control and gentamicin-treated brush-border membrane vesicles. Kinetic analyses of D-glucose transport into 1 mM gentamicin-treated brush-border membrane vesicles demonstrated that gentamicin decreased Vmax in the outer cortical preparation, while it did not affect Vmax in the outer medullary preparation. With regard to Km, there was no effect of gentamicin in any vesicle preparation. When brush-border membrane vesicles were incubated with higher concentrations of gentamicin, Na+-dependent D-glucose transport was inhibited dose-dependently in both outer cortical and outer medullary preparations. Dixon plots yield inhibition constant Ki = 4 mM in the outer cortical preparation and Ki = 7 mM in the outer medullary preparation. These results indicate that the Na+-dependent D-glucose transport system in early proximal tubule is more vulnerable to gentamicin toxicity than that in late proximal tubule.  相似文献   

20.
We characterized the uptake of ferric enterobactin (FeEnt), the native Escherichia coli ferric siderophore, through its cognate outer membrane receptor protein, FepA, using a site-directed fluorescence methodology. The experiments first defined locations in FepA that were accessible to covalent modification with fluorescein maleimide (FM) in vivo; among 10 sites that we tested by substituting single Cys residues, FM labeled W101C, S271C, F329C, and S397C, and all these exist within surface-exposed loops of the outer membrane protein. FeEnt normally adsorbed to the fluoresceinated S271C and S397C mutant FepA proteins in vivo, which we observed as quenching of fluorescence intensity, but the ferric siderophore did not bind to the FM-modified derivatives of W101C or F329C. These in vivo fluorescence determinations showed, for the first time, consistency with radioisotopic measurements of the affinity of the FeEnt-FepA interaction; K(d) was 0.2 nm by both methods. Analysis of the FepA mutants with AlexaFluor(680), a fluorescein derivative with red-shifted absorption and emission spectra that do not overlap the absorbance spectrum of FeEnt, refuted the possibility that the fluorescence quenching resulted from resonance energy transfer. These and other data instead indicated that the quenching originated from changes in the environment of the fluor as a result of loop conformational changes during ligand binding and transport. We used the fluorescence system to monitor FeEnt uptake by live bacteria and determined its dependence on ligand concentration, temperature, pH, and carbon sources and its susceptibility to inhibition by the metabolic poisons. Unlike cyanocobalamin transport through the outer membrane, FeEnt uptake was sensitive to inhibitors of electron transport and phosphorylation, in addition to its sensitivity to proton motive force depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号