首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14?months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three ‘Rotorod’ pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m?3 air for olive, 3–5 pollen m?3 air for grasses, 4–5 pollen m?3 air for Artemisia, 10–20 pollen m?3 air for pecan and 50–60 pollen m?3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

2.
Summary Concentrations of airborne pollens recorded in Trieste in 1989 are evaluated in relation to allergic complaints in 113 patients with skin prick tests positive to one pollen species. Analysis of the result enable the two most important allergens to be confirmed as: Poaceae in 70.7% of patients and Parietaria in 18.6%. Few people had monosensitation to Compositae (Artemisia), Corylaceae and Fagaceae.Sympotoms are related to the flowering period when pollen levels climbed to daily averages of 15–20 grains/m3 but they started later than airborne peak concentrations and finished later than pollen decline. Pollen concentration recording can be a useful way to predict the clinical manifestation in sensitive patients but other factors are involved in determining symptoms like subjective mucosal reactions, polysensitization, patients living and working environment.  相似文献   

3.
During six consecutive years (1993–1998), aBurkard volumetric pollen trap was continuouslyoperated to sample pollen from the air of thecity of Murcia. The aim of the study was toelucidate the spectra of airborne pollen andthe variations during the year, and toelaborate a pollen calendar. This time spanincludes the end of the period with severedrought from 1990–1995, which particularly affected the south-eastern region of Spain.The total sum of daily average pollenconcentrations amounted to 148,645 pollen grainsbelonging to 93 different taxa. A daily averageof 74 pollen grains/m3 and 11 taxa wererecorded, with maxima of 1157 and 27respectively. The total pollen amountregistered in a year correlated with yearlyrainfall, but there was no relation with meanannual temperature. As for annual fluctuations,there seemed to be no influence by totalrainfall or temperature. Spring and winter werethe seasons with the highest pollen counts andpollen diversity.From the 93 identified taxa, 36 are included inthe pollen calendar. Noteworthy findings are:(i) the presence of Thymelaeaceae,Robinia, Betula, Castanea,Zygophyllum, Caryophyllaceae andCannabis, (ii) a long pollen season ofChenopodiaceae/Amaranthaceae, Urticaceae,Poaceae, Arecaceae and Plantago, (iii)the occurrence of summer, autumn and winterflowering of Artemisia, (iv) the lateappearance of Corylus pollen, and (v) theminor presence of Casuarina pollen duringthe mid winter and late spring.  相似文献   

4.
Relationships between weather parameters andairborne pollen loads of Pinus inBrisbane, Australia have been investigated overthe five-year period, June 1994–May 1999.Pinus pollen accounts for 4.5% of the annualairborne pollen load in Brisbane where thePinus season is confined to the winter months,July–early September. During the samplingperiod loads of 11–>100 grains m3 wererecorded on 24 days and 1–10 grains m3 on204 days. The onset and peak dates wereconsistent across each season, whereas the enddates varied. The onset of the Pinuspollen season coincided with the coolestaverage monthly temperatures (< 22°C),lowest rainfall (< 7mm), and four weeks afterdaily minimum temperatures fell to 5–9°Cin late autumn. Correlations obtained betweendaily airborne Pinus pollen counts andtemperature/rainfall parameters show thatdensities of airborne Pinus pollen arenegatively correlated with maximum temperature(p < 0.0001), minimum temperature (p < 0.0001)and rainfall (p < 0.05) during the mainpollination period. The mean duration of eachpollen season was 52 days; longer seasons wereshown to be directly related to lower averageseasonal maximum temperatures (r2 = 0.85,p = 0.025). These results signify that maximumand minimum temperatures are the majorparameters that influence the onset andduration of the Pinus pollen season inthe environs of Brisbane. Respiratory allergyis an important health issue in Brisbane,Australia, but it remains unknown whether ornot airborne Pinus pollen is acontributing factor.  相似文献   

5.
In this study, the seasonally averaged intradiurnal patterns of four different pollen types (Fraxinus, Betula, Poaceae and Artemisia) and the role of traffic volume, air pollution and selected weather parameters were investigated. Measurements were carried out with a 7-day recording volumetric spore trap (Hirst type) near a congested city motorway (the A 100) in Berlin, Germany, in 2012, 2013 and partly 2011. Both Poaceae and Artemisia pollen showed distinct patterns which were similar across the years. The main period of grass pollen concentrations in the air was from 8 a.m. to 10 p.m. with peaks about midday or in the afternoon. Mugwort pollen mainly occurred between 6 a.m. and 2 p.m. with a clear maximum from 8 to 10 a.m. With regard to Fraxinus and Betula pollen, the patterns were not as clear and showed differences throughout the years. The intradiurnal patterns of traffic volume and pollen load, mainly of Poaceae in the afternoon and Artemisia in the morning, were partly coincident. The combination of both a high pollen count and air pollution, due to exhaust emissions, represents a special health threat which could result in a double burden for allergy sufferers. In the case of the daily means of Betula and Poaceae, relative humidity had a significantly negative effect on pollen concentrations on the same and/or next day/s, sunshine duration (Poaceae) and air temperature (Artemisia) a positive one.  相似文献   

6.
The possibility of creating a forecast model for grapeproduction using airborne pollen concentrations ofVitis vinifera L. was investigated. The studyarea is located in the province of Trento (46°11,11°08), North Italy. Because of its prestigious wineproduction, the area is quite important on a nationalscale.Airborne pollen concentration data (P/m3) werecollected for a five year period (1993–1997) with aHirst type sampler (VPPS 2000 – Lanzoni) following thestandard methodology proposed by the ItalianAeroallergen Network. For the same five-year period,grape production data (kg/ha) from vineyards adjacentto the pollen sampler were used along with provincialdata. Regression lines were constructed using the Lnof the annual sum of daily pollen concentrations (Ip)as the independent variable and grape productionvalues as the dependent variable. Correlations betweenpollen data (pollen index, beginning and duration ofmain pollen season) and meteorological data(temperature and rainfall) are shown.  相似文献   

7.
Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994–May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December–April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m–3 were recorded on 244 days and coincided with maximum temperatures of 28.1 ± 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearmans correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.  相似文献   

8.
The investigation of airborne pollen and fungalspore concentrations was carried out in Cracowbetween 1997–1999. For this study thevolumetric method has been employed (Burkard).At the same time the clinical diagnosis ofpollen allergy in 40 patients was obtained onthe basis of an interview, positive skin pricktests with pollen extracts and increasedspecific IgE level. An increase in seasonalallergy symptoms in all patients occurred fromthe middle of May to the middle of August.Eighty eight percent of the patients (35 out of40) were sensitive to Poaceae pollen and about50% of them were additionally sensitive totree and herb pollen excluding grasses. Forpatients with additional allergy to tree pollenthe seasonal symptoms started at the end ofMarch (Betula) while for patients withadditional allergy to herb pollen it wasextended to the middle of September (Artemisia).Five people out of 40 revealed positive skinreactions to Alternaria spores and anincrease in specific IgE level. Positive skinreaction to Cladosporium spores with noincrease in specific IgE level occurred in 2patients. The increase in seasonal allergysymptoms in people sensitive to Alternariaspores noted in July and August could becaused not only by these spores but also byPoaceae pollen.  相似文献   

9.
Summary A study of concentration of airborne pollen grains and fungal spores has been carried out in Barcelona (Spain) during 1989–90. The volumetric method of filtration, previously described for airborne pollen analysis (Suarez-Cervera and Seoane-Camba, 1983) has been used. In this case, the filters have also been cultivated in Czapecdox-agar, Sabouraud-agar and Sabouraud-agar with streptomycin for the identification of the fungal colonies. Analysis of the number of fungal spores growing on the filter shows that the maxima of colonies of spores developed in culture per m3 of air filtered, correspond to September–December. Pollen and spore concentrations start from November–December, reach a maximum in March–April and decline progressively until September–October. Therefore, in the city of Barcelona, the greatest concentration occurs in spring and the lowest in autumn.  相似文献   

10.
Airborne pollen and spores, as well as airflow directions, were continuously monitored during a cruise across the East Mediterranean from Tel Aviv, Israel, to Istanbul, Turkey. In spite of the fact that a high-altitude dust cloud moved, at that, time from North Africa, across the East Mediterranean, only a few dust particles were monitored on the boat. The numbers of counted airborne pollen along the cruise path were rather small. This is, in part, because the trip was taken after the main flowering season in the East Mediterranean region. Nevertheless, airborne pollen grains were still found, either as a result of remnant pollen releases by late-flowering plants or because of secondary lift-up of previously settled pollen. The presented pollen counts are average pollen counts /m3 air /6 h. The counts ranged between ∼5 pollen/m3 of air in mid-sea (July 16th–July 17th) or ∼6 pollen/m3 of air on the Israeli coast (July 16–July 17th), and 30 pollen/m3 of air near the coasts of Turkey and of the Greek Islands (July 18th–July 19th) and some 18 taxa of pollen were identified, most of them at the family level. Some 30 taxa of different spores were recorded. The numbers of airborne spores were relatively low in mid-sea (300–750 spores/m3 air), but were high near the coasts of Turkey (1,200–2,400 spores/m3 air) and of Israel (340–1,695 spores/m3 air).  相似文献   

11.
The relationship between HLA type and specific immune responsiveness toward ultrapure Ambrosia artemisiifolia (short ragweed) pollen allergen Amb a VI (Ra6) was explored in a genetic-epidemiologic study of groups of 116 and 81 Caucasoid subjects who were skin-test \ positive (ST) toward common environmental allergens. Specific immune responsiveness to Amb a VI was assessed by measuring serum IgE and IgG antibodies (Abs) by double Ab radioimmunoassay in both ST groups. Significant associations were found between IgE Ab responsiveness to Amb a VI and the possession of HLA-DR5; P values for the two groups were, respectively, 7 × 10–7 and 1 × 10–3 by nonparametric analyses, and 4 × 10–11 and 5 × 10–8 by parametric analyses. The levels of significance for the associations between HLA-DR5 and IgG Ab responsiveness were highly dependent on the extent of ragweed immunotherapy (Rx) within the patient group; by parametric statistics, the associations were 10–11 for the group that had received relatively little Rx and 2 × 10–3 for the group that had received more intensive Rx. These results provide further striking evidence for the existence of specific HLA-linked human Ir genes involved in responsiveness toward inhaled allergens and illustrate the usefulness of the allergy model in studies of the genetic basis of human immune responsiveness. Extension of these studies to investigation of structure-function relationships involved in antigen recognition by Ia molecules and the T-cell receptor will lead to a better understanding of human susceptibility toward immunologic diseases.Abbreviations used in this paper Ab antibody - Amb a VI Amb a V, new IUIS nomenclature for Ambrosia artemisiifolia pollen allergens nos. 6 and 5 (short ragweed Ra6 and Ra5) (Marsh et al. 1986b) - Lol p II, III new IUIS nomenclature for Lolium perenne pollen allergens II and III (perennial rye grass, Rye II and Rye III) (Marsh et al. 1986b) - BBS borate-buffered physiologic saline - BSA bovine serum albumin - DARIA double-antibody radioimunoassay - Ia immune-associated - PAGE polyacrylamide gel electrophoresis - RIST radioimmunosorbent test - Rx immunotherapy - SDS sodium dodecyl sulfate - ST skin test  相似文献   

12.
Summary A comparison betweenParietaria pollen count and allergic symptoms of rhino-conjunctivitis in the early season was used in utilized to determine a «threshold-value» for this pollen. Clinical data were obtained from diary-cards of 34 allergic patients and pollen data from a volumetric sampling, carried out by means of a Hirst-Burkard pollen-trap. A significant correlation (r=0.98) was found between pollen count and symptom scores. Mild symptoms were registered with concentrations above 10–15 pollens/m3. Severe symptoms occurred when pollen count exceeded 80/m3/24 h., and over 90% of patients recorded symptoms. The importance of the late reactions and of the total allergenic airborne content are emphasized.  相似文献   

13.
The airborne pollens can produce asthma andrhinoconjuctivitis (pollinosis). Sincegeographic and climatic factors influence thequality and quantity of pollen counts invarious countries and between seasons, the aimof the study was to record major seasonalallergenic pollens; grasses, olive, parietariaand cypress in Athens during five consecutiveseasons throughout the years 1995–1999. Thedaily pollen count was carried out every yearfrom March to October using a Burcardvolumetric weekly spore trap, which was placedabout 20 m from the ground, in Athens citycentre. Daily values were expressed as numberof pollen grains/m3 of air. The meanmonthly values of pollens/m3 were used tocompare the results of the consecutive years.Recording of the major pollen allergens inAthens area for five consecutive years led tothe assessment of the pollination period foreach of these plants and confirmed thevariations in the amount of pollen per plantper year.  相似文献   

14.
The airborne pollen concentration of the four mostfrequent and most allergenic taxa in Poland; Alnus, Betula, Poaceae, and Artemisia atPozna in the years 1995–1996 has been analyzed,using a Hirst-type volumetric spore trap. Theappearance of the earliest pollen producing taxa wasobserved as early as January and February, which isrelevant information for people subject to allergiesin the Pozna region, where Spring usually beginsin March. The periods of high and very high pollenconcentration of individual taxa have been comparedfor the two years.  相似文献   

15.
The diversity of airborne pollen grains in El-Hadjar town (northeast Algeria) was measured for 1 year, from July 1, 2012 to June 30, 2013, by means of the gravimetric method using Durham apparatus. The total number of pollen grains/cm2 was calculated from slides that were changed daily. This aerobiological study documented the air concentration of pollen from 50 taxa, where 28 belonged to arboreal and 22 to non-arboreal taxa. The percentage of pollen from arboreal and non-arboreal taxa was 56 and 44 %, respectively. From the list, the major collected taxa causing allergy in humans dominant in the Mediterranean area were Cupressaceae (14.86 %), Olea sp. (7.18 %), Casuarina sp. (6.44 %), and Fraxinus sp. (3.83 %) among arboreal plants, whereas for the non-arboreal plants Poaceae (23.20 %), Mercurialis sp. (12.58 %), Plantago sp. (1.69 %), Urticaceae (0.95 %), and Chenopodiaceae (0.85 %). The highest pollen counts occurred in the period from February to April. The pollen calendar for the region presented in this paper may be a useful tool for allergologists and botanical awareness.  相似文献   

16.
Summary Mercury concentration in intraoral air and urine of seven females with dental amalgam was measured before and after intake of one hard-boiled egg. A considerable decrease in mercury concentration in intraoral air was found. Twenty women with about equal dental amalgam status, with or without subjective symptoms related to dental amalgam, were also studied. Mercury concentrations in intraoral air and urine were measured. For all the 27 women the basal intraoral air concentration of mercury ranged over 0.6–10.4 g/m3 (median value 4.3 g/m3). This corresponds to a release of 0.02–0.38 ng/s (median value 0.16 ng/s). In urine, the mercury concentration varied from < 0.8–6.9 g/g creatinine (median value 1.9 g/g creatinine). Data from both parameters were significantly correlated to the total number of teeth areas with dental amalgam. Protein values in urine indicated no renal damage. Maximum concentrations of mercury vapour in intraoral air for the 27 women who had chewed chewing gum for 5 min varied between 2–60 g Hg/m3 (median value 19 g Hg/m3). This corresponds to 0.07–2.20 ng Hg/s and a median value of 0.70 ng Hg/s.  相似文献   

17.
Rhodospirillum rubrum was grown continuously and photoheterotrophically under light limitation using a cylindrical photobioreactor in which the steady state biomass concentration was varied between 0.4 to 4 kg m–3 at a constant radiant incident flux of 100 W m–2. Kinetic and stoichiometric models for the growth are proposed. The biomass productivities, acetate consumption rate and the CO2 production rate can be quantitatively predicted to a high level of accuracy by the proposed model calculations. Nomenclature: C X, biomass concentration (kg m–3) D, dilution rate (h–1) Ea, mean mass absorption coefficient (m2 kg–1) I , total available radiant light energy (W m–2) K, half saturation constant for light (W m–2) R W, boundary radius defining the working illuminated volume (m) r X, local biomass volumetric rate (kg m–3 h–1) <r X>, mean volumetric growth rate (kg m–3 h–1) V W, illuminated working volume in the PBR (m–3). Greek letters: , working illuminated fraction (–) M, maximum quantum yield (–) bar, mean energetic yield (kg J–1).  相似文献   

18.
In Melbourne, Australia, grass pollen is the predominant cause of hayfever in late spring and summer. The grass pollen season has been monitored in Melbourne, using a Burkard spore trap, for 13 years (1975–1981, 1985 and 1991–1997). Total counts for grass pollen were highly variable from one season to the next (approximately 1000 to >8000 grains/m3). The daily grass pollen counts also showed a high variability (0 to approximately 400 grains/m3). In this study, the grass pollen counts of the 13 years (12 grass pollen seasons, extending from October to January) have been compared with meteorological data in order to identify the conditions that can determine the daily amounts of grass pollen in the air. It was found that the seasonal total of grass pollen was directly correlated with the rainfall sum of the preceding 12 months (1 September–31 August): seasonal total of grass pollen (counts/m3)=18.161 × rainfall sum of the preceding 12 months (mm) −8541.5 (r s=0.74,P<0.005,n=12). The daily amounts of grass pollen in the air were positively correlated with the corresponding daily average ambient temperatures (P<0.001). The daily amount of grass pollen which was to be expected with a certain daily average temperature was linked to the seasonal total of grass pollen: in years with high total grass pollen counts, a lower daily average temperature was required for a high daily pollen count than in years with low total grass pollen counts. As the concentration of airborne grass pollen determines the severity of hayfever in sensitive patients, an estimation of daily grass pollen counts can provide an indication of potential pollinosis symptoms. We compared daily grass pollen counts with the reported symptomatic responses of hayfever sufferers in November 1985 and found that hayfever symptoms were significantly correlated to the grass pollen counts (P<0.001 for nasal,P<0.005 for eye symptoms). Thus, a combination of meteorological information (i.e. rainfall and temperature) allows for an estimation of the potential daily pollinosis symptoms during the grass pollen season. Here we propose a symptom estimation chart, allowing a quick prediction of eye and nasal symptoms that are likely to occur as a result of variations in meteorological conditions, thus enabling both physicians and patients to take appropriate avoidance measures or therapy.  相似文献   

19.
An aerobiological study was performed to evaluate the potential exposure of animals and workers to dust constituents generated during routine animal house work. Different rooms of air conditioned (A, control) and passively ventilated (B, non-air conditioned) animal facilities were sampled, in order to evaluate total airborne culturable fungi and bacteria, fungal spore concentrations and particle levels. Airborne room particles were analyzed gravimetrically and for endotoxin content. All parameters, except for culturable fungi, were higher in facility B and statistically significant, with respect to those from the control facility A. Median values for airborne particle concentration, endotoxin and fungal spores in facility B were: 115 µg m–3, 25 EU m–3, and 2173 spores m–3, respectively. Median values for facility A were: 66 µg m–3, 9 EU m–3, and 248 fungal spores m–3. Broncheoalveolar lavage from rats kept in the rat room of B, presented median concentrations of total cells and lactate dehydrogenase, higher than those found in the control facility (4.4 × 105 vs. 1.1 × 105 and 2.7 UmL-1 vs. 0.39 UmL–1, respectively). Values of total and biological particles of both facilities, as well as the time spent in different rooms, showed that worker exposure was higher during cage washing. It was especially high in the passively ventilated facility (airborne particles 686 µg m–3 3.5 h–1 vs. 976 µg m–3 3.5 h–1, endotoxin 70 EU m–3 3.5 h–1 vs. 108 EU m–3 3.5 h–1). The type of basidiospores and ascospores found, as well as the significant correlation between particle levels and endotoxin contents suggests that wood chip bedding disturbance during cage washing is an important source for airborne biological particles. The changes in broncheoalveolar lavage components found in rats from these facilities and previously reported changes in pro-inflammatory cellular responses found in workers, indicate that these relatively low levels of exposure are enough to induce a biological response. Studies considering the composition of mixed organic dusts, would be needed to reevaluate current occupational standards.  相似文献   

20.
In order to investigate the relationship betweenallergenic load and allergic sensitisation prevalenceon a long period, we analysed the annual data ofherbaceous pollen airborne diffusion in Genoa(NW-Italy) for 17 years (1981–1997), with particularregard to the most important allergenic species:Poaceae, Parietaria, Artemisia, Ambrosia. Weevaluated the relative trend and compared it with theprevalence data of patients sensitisation to thesepollens in the same period.The analysis of annual pollen amount revealed asignificant rising trend (r = 0.73, p < 0.05) of Parietaria pollen (average 14.324 grains/m3/year),whereas Poaceae (2048/year) and Artemisia(170/year) pollen count did not show any significantchange. Ambrosia (average 70/year) has been rising since 1989 (r = 0.87, p < 0.05) and reached themaximum pollen count in the last three years.The prevalence of pollen sensitisation resulted to bevery high (about 75%) in our atopic patients withrespiratory symptoms and did not change significantlyin the years: Parietaria pollen allergy waspresent in about 70% of patients with at least oneSPT positive to pollens (and 55% of atopicsubjects), and this frequency, much higher than theone found in North Italy, showed low year-to-year variability.Among pollinotics patients, Poaceae cutaneoussensitisation was found at a quite stable rate in theabove mentioned period (about 51%), as well as thatto Artemisia pollen (8%). Ambrosia skinprick test positivity is very rare (about 0.5%),without any evident increase.The present study shows that, for some of theherbaceous species, we cannot demonstrate astraightforward relationship between the trend ofairborne pollen and the frequency of sensitisation inexposed people. However, in the case of Parietaria, the high level of pollen amount in theair is clearly related with the high rate of cutaneous positivity in patients, but it seems tosuggest a ``plateau' that is not modified by anyfurther increase in airborne pollen (perhaps forgenetic limiting factors). On the other hand, Ambrosia pollen count, even if increasing in Genoa'satmosphere, could still be too low, and it would takesome more time to cause allergic sensitisation in exposed people.This kind of study, pointing out the influence ofairborne allergen exposure on hypersensitivitymechanisms, should be extended in time and world-wideto obtain general conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号