首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-(14)C]DPAn-6 was infused intravenously for 5min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2-7.7 fold, while turnover rates were increased 2.1-4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. (196 words).  相似文献   

2.
The loss of docosahexaenoic acid (DHA) from the retina or brain has been associated with a loss in nervous-system function in experimental animals, as well as in human infants fed vegetable oil-based formulas. The reversibility of the loss of DHA and the compensation by an increase in the n-6 docosapentaenoic acid (DPAn-6) was studied in young adult rats. Long-Evans rats were subjected to a very low level of n-3 fatty acids through two generations. The F2 generation, n-3-deficient animals at 7 weeks of age were provided a repletion diet containing both alpha-linolenate and DHA. A separate group of F2 generation rats had been maintained on an n-3-adequate diet of the same composition. Tissues from the brain, retina, liver, and serum were collected on weeks 0, 1, 2, 4, and 8 from both groups of animals. The concentrations of DHA, DPAn-6, and other fatty acids were determined and the rate of recovery and length of time needed to complete DHA recovery were determined for each tissue. The DHA level in the brain at 1 and 2 weeks after diet reversal was only partially recovered, rising to approximately 20% and 35%, respectively, of the n-3-adequate group level. Full recovery was not obtained until 8 weeks after initiation of the repletion diet. Although the initial rate of retinal DHA accretion was greater than that of brain DHA, the half-time for DHA recovery was only marginally greater. On the other hand, the levels of DHA in the serum and liver were approximately 90% and 100% replaced, respectively, within 2 weeks of diet reversal. A consideration of the total amounts and time courses of DHA repleted in the nervous system compared with the liver and circulation suggests that transport-related processes may limit the rate of DHA repletion in the retina and brain.-- Moriguchi, T., J. Loewke, M. Garrison, J. N. Catalan, N. Salem, Jr. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J. Lipid Res. 2001. 42: 419--427.  相似文献   

3.
The objective of this study was to investigate if maternal dietary 20:4n-6 arachidonic acid (AA) and 22:6n-3 compared with adequate or low levels of 18:3n-3 linolenic acid (LNA) increases synaptic plasma membrane (SPM) cholesterol and phospholipid content, phospholipid 20:4n-6 and 22:6n-3 content, and Na,K-ATPase kinetics in rat pups at two and five weeks of age. At parturition, Sprague-Dawley rats were fed semi-purified diets containing either AA + docosahexaenoic acid (DHA), adequate LNA (control; 18:2n-6 : 18:3n-3 ratio of 7.1 : 1) or low LNA (18:2n-6 : 18:3n-39 ratio of 835 : 1). During the first two weeks of life, the rat pups received only their dams' milk. After weaning, pups received the same diet as their respective dams to five weeks of age. No significant difference was observed among rat pups fed the diet treatments for SPM cholesterol or total and individual phospholipid content at two and five weeks of age. Fatty acid analysis revealed that maternal dietary AA + DHA, compared with feeding the dams the control diet or the low LNA diet, increased 20:4n-6 in phosphatidylserine and 22:6n-3 content of SPM phospholipids. Rats fed dietary AA + DHA or the control diet exhibited a significantly increased Vmax for SPM Na,K-ATPase. Diet treatment did not alter the Km (affinity) of SPM Na,K-ATPase in rat pups at two and five weeks of age. It is concluded that dietary AA + DHA does not alter SPM cholesterol and phospholipid content but increases the 22:6n-3 content of SPM phospholipids modulating activity of Na,K-ATPase.  相似文献   

4.
The extent to which the heart can convert alpha-linolenic acid (alpha-LNA, 18:3n-3) to longer chain n-3 PUFAs is not known. Conversion rates can be measured in vivo using radiolabeled alpha-LNA and a kinetic fatty acid model. [1-(14)C]alpha-LNA was infused intravenously for 5 min in unanesthetized rats that had been fed an n-3 PUFA-adequate [4.6% alpha-LNA, no docosahexaenoic acid (DHA, 22:6n-3)] or n-3 PUFA-deficient diet (0.2% alpha-LNA, nor DHA) for 15 weeks after weaning. Arterial plasma was sampled, as was the heart after high-energy microwaving. Rates of conversion of alpha-LNA to longer chain n-3 PUFAs were low, and DHA was not synthesized at all in the heart. Most alpha-LNA within the heart had been beta-oxidized. In deprived compared with adequate rats, DHA concentrations in plasma and heart were both reduced by >90%, whereas heart and plasma levels of docosapentaenoic acid (DPAn-6, 22:5n-6) were elevated. Dietary deprivation did not affect cardiac mRNA levels of elongase-5 or desaturases Delta6 and Delta5, but elongase-2 mRNA could not be detected. In summary, the rat heart does not synthesize DHA from alpha-LNA, owing to the absence of elongase-2, but must obtain its DHA entirely from plasma. Dietary n-3 PUFA deprivation markedly reduces heart DHA and increases heart DPAn-6, which may make the heart vulnerable to different insults.  相似文献   

5.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

6.
7.
Knowing threshold changes in brain lipids and lipid enzymes during dietary n-3 polyunsaturated fatty acid deprivation may elucidate dietary regulation of brain lipid metabolism. To determine thresholds, rats were fed for 15 weeks DHA-free diets having graded reductions of α-linolenic acid (α-LNA). Compared with control diet (4.6% α-LNA), plasma DHA fell significantly at 1.7% dietary α-LNA while brain DHA remained unchanged down to 0.8% α-LNA, when plasma and brain docosapentaenoic acid (DPAn-6) were increased and DHA-selective iPLA2 and COX-1 activities were downregulated. Brain AA was unchanged by deprivation, but AA selective-cPLA2, sPLA2 and COX-2 activities were increased at or below 0.8% dietary α-LNA, possibly in response to elevated brain DPAn-6. In summary, homeostatic mechanisms appear to maintain a control brain DHA concentration down to 0.8% dietary DHA despite reduced plasma DHA, when DPAn-6 replaces DHA. At extreme deprivation, decreased brain iPLA2 and COX-1 activities may reduce brain DHA loss.  相似文献   

8.
Our aim was to examine the docosahexaenoic acid (DHA; 22:6n-3) status of pregnant African-American women reporting to the antenatal clinic at Wayne State University in a longitudinal study design. Fatty acid compositions of plasma and erythrocyte total lipid extracts were determined and food frequency surveys were administered at 24 weeks of gestation, delivery, and 3 months postpartum for participants (n = 157). DHA (mean +/- SD) in the estimated total circulating plasma was similar at gestation (384 +/- 162 mg) and delivery (372 +/- 155 mg) but was significantly lower at 3 months postpartum (178 +/- 81 mg). The relative weight percentage of DHA and docosapentaenoic acid n-6 (DPAn-6; 22:5n-6) decreased postpartum, whereas their respective metabolic precursors, eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (AA; 20:4n-6), increased. Similar results were found in erythrocytes. Dietary intake of DHA throughout the study was estimated at 68 +/- 75 mg/day. The relative amounts of circulating DHA and DPAn-6 were increased during pregnancy compared with 3 months postpartum, possibly via increased synthesis from EPA and AA. The low dietary intake and blood levels of DHA in this population compared with others may not support optimal fetal DHA accretion and subsequent neural development.  相似文献   

9.
This study was conducted to determine whether provision of preformed dietary docosapentaenoic acid (DPAn-6) can replace docosahexaenoic acid (DHA) for brain function as assessed by spatial task performance. A newly modified artificial rearing method was employed to generate n-3 fatty acid-deficient rats. Newborn pups were separated from their mothers at 2 days of age and given artificial rat milk containing linoleic acid (LA), or LA supplemented with 1% DHA (DHA), 1% DPAn-6 (DPA) or 1% DHA plus 0.4% DPAn-6 (DHA/DPA). The animals were then weaned onto similar pelleted diets. At adulthood, behavioural tasks were administered and then the brains were collected for fatty acid analysis. The LA and DPA groups showed a lower (63-65%) brain DHA than the dam-reared, DHA and DHA/DPA groups and this loss was largely compensated for by an increase in brain DPAn-6. The brain fatty acid composition in the DPA group was the same as that in the LA group at adulthood. In the Morris water maze, the LA and DPA groups exhibited a longer escape latency than the dam-reared and DHA groups and had a defect in spatial retention. In conclusion, DPAn-6 could not replace DHA for brain function, indicating a highly specific structural requirement for DHA.  相似文献   

10.
Docosahexaenoic acid (DHA), a crucial nervous system n-3 PUFA, may be obtained in the diet or synthesized in vivo from dietary alpha-linolenic acid (LNA). We addressed whether DHA synthesis is regulated by the availability of dietary DHA in artificially reared rat pups, during p8 to p28 development. Over 20 days, one group of rat pups was continuously fed deuterium-labeled LNA (d5-LNA) and no other n-3 PUFA (d5-LNA diet), and a second group of rat pups was fed a d5-LNA diet with unlabeled DHA (d5-LNA + DHA diet). The rat pups were then euthanized, and the total amount of deuterium-labeled docosahexaenoic acid (d5-DHA) (synthesized DHA) as well as other n-3 fatty acids present in various body tissues, was quantified. In the d5-LNA + DHA group, the presence of dietary DHA led to a marked decrease (3- to 5-fold) in the total amount of d5-DHA that accumulated in all tissues that we examined, except in adipose. Overall, DHA accretion from d5-DHA was generally diminished by availability of dietary preformed DHA, inasmuch as this was found to be the predominant source of tissue DHA. When preformed DHA was unavailable, d5-DHA and unlabeled DHA were preferentially accreted in some tissues along with a net loss of unlabeled DHA from other organs.  相似文献   

11.
In our earlier study, we have shown that rats fed spray-dried milk containing alpha-linolenic acid (LNA 18:3 n-3) or eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) had significantly lower amounts of serum and liver cholesterol. To evaluate the mechanism for hypocholesterolemic effect of n-3 fatty acids containing milk formulation, we fed male Wistar rats with spray-dried milk containing linseed oil (LSO) (source of LNA) or fish oil (FO) (source of EPA+DHA) for 8 weeks. Feeding n-3 fatty acid containing milk formulation lowered the hepatic 3-hydroxy-methylglutaryl coenzyme A (HMG Co A) activity by 17-22% compared to rats given control diet devoid of n-3 fatty acids. The cholesterol level in liver microsomes was found to be decreased by 16% and 20%, respectively, in LSO and FO containing formulation fed rats. The bile flow was enhanced to an extent of 19-23% in experimental groups compared to control animals. The biliary cholesterol and phospholipid secretion was increased to an extent of 49-55% and 140-146%, respectively, in rats fed n-3 fatty acid containing formulation. The increase in the total bile acids secretion in bile was mainly reflected on an increase in the levels of taurine conjugated bile acids. These results indicated that n-3 fatty acid containing spray-dried milk formulation would bring about the hypocholesterolemic effect by lowering HMG Co A reductase activity in liver and by increasing the secretion of bile constituents.  相似文献   

12.
Miyazawa D  Ikemoto A  Fujii Y  Okuyama H 《Life sciences》2003,73(16):2083-2090
Rats fed a high linoleic acid (LA, 18:2n-6) diet or a high alpha-linolenic acid (ALA, 18:3n-3) diet for 4 months after weaning. Platelets from the high-LA group contained more arachidonic acid (AA, 20:4n-6) and less eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared with those from the high-ALA group. Incorporation of [32P]orthophosphate into platelet phospholipids was increased by thrombin-treatment, and was greater by ca. 30% in the high-LA group than in the high-ALA group both in the presence and absence of thrombin. The formation of [32P]lysophosphatidic acid (LPA), a lipid messenger, in [32P]orthophosphate-labeled platelets was increased 6.6-fold in the high-LA group and 4.1-fold in the high-ALA-group by thrombin-treatment. The formation of [32P] LPA in activated platelets was reduced by 35% in the high-ALA group.  相似文献   

13.
We have investigated how n-3 highly unsaturated fatty acids (HUFAs) in the diet affect fatty acid (FA) utilization, fat storage and oxidative stress (OS) in Atlantic salmon (Salmo salar) white adipose tissue (WAT). Four groups of Atlantic salmon were fed for 21 weeks on one of the four diets supplemented with 23% (of dry matter) lipid. Docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) levels increased from 10% of total FAs in the rapeseed oil (RO) diet, to 20% in the fish oil (FO) diet, and to 50% and 55% in the DHA-enriched and EPA-enriched diets, respectively. Increased dietary levels of n-3 HUFAs resulted in lower fat percentage in WAT. Furthermore, mitochondrial FA β-oxidation activity was higher in the FO group than it was in the RO group. The relative levels of DHA and EPA in phospholipids (PLs) from WAT and mitochondrial membranes increased with the increasing dietary levels of these HUFAs. In general, the mitochondrial membrane PLs were characterised by lower relative levels of n-3 HUFAs and higher relative levels of linoleic acid (LA; 18:2 n-6) than WAT membrane PLs. The predominance of LA relative to n-3 HUFAs in mitochondrial membrane PLs may help to protect these PLs from peroxidation. Cytochrome c oxidase measurements revealed higher incidence of disrupted mitochondrial membranes in the DHA and EPA dietary groups than in the FO and RO dietary groups. This disruption further affected the mitochondrial function, resulting in a marked reduction in FA β-oxidation capacities. The reduction in mitochondrial function and the increase in the activity of superoxide dismutase (SOD) in the DHA and EPA groups showed that high dietary dose of DHA and EPA resulted in oxidative stress (OS). The increased activity of caspase 3 in the high n-3 HUFA groups suggested the induction of apoptosis and increased incidence of cell death in WAT, which may be one of the factors explaining the lower fat percentage found in these groups.  相似文献   

14.
Docosahexaenoic acid (DHA; 22:6n-3) and n-6 docosapentaenoic acid (DPAn-6; 22:5n-6) are components of enriched animal feed and oil derived from Schizochytrium species microalgae. A one generation, artificial rearing model from day 2 after birth onward (AR) and a dam-reared control group (DAM) were used to examine DPAn-6 feeding on the fatty acid composition of various rat tissues at 15 weeks of age. Four AR diets were based on an n-3 fatty acid-deficient, 18:2n-6-based artificial milk with 22:6n-3 and/or 22:5n-6 added: AR-LA, AR-DHA, AR-DPAn-6, and AR-DHA+DPAn-6. The 22:6n-3 levels for the DAM, AR-DHA, and AR-DHA+DPAn-6 groups tended to be similar and higher than in the AR-LA and AR-DPAn-6 groups. The levels of 22:5n-6 tended to be higher only in the absence of dietary 22:6n-3. Adipose levels of 22:5n-6 was the only exception, as 22:5n-6 was significantly higher in AR-DHA+DPAn-6 than was observed in either the DAM or the AR-DHA group. There were no differences in 20:4n-6 levels within the tissues examined. In conclusion, 22:5n-6 replaces 22:6n-3 in the absence of 22:6n-3 only and does not appear to compete with 22:6n-3 in the presence of dietary 22:6n-3, suggesting that oils containing 22:5n-6 and 22:6n-3 may be a good dietary source of 22:6n-3.  相似文献   

15.
Rhesus monkeys given pre- and postnatal diets deficient in n-3 essential fatty acids develop low levels of docosahexaenoic acid (22:6 n-3, DHA) in the cerebral cortex and retina and impaired visual function. This highly polyunsaturated fatty acid is an important component of retinal photoreceptors and brain synaptic membranes. To study the turnover of polyunsaturated fatty acids in the brain and the reversibility of n-3 fatty acid deficiency, we fed five deficient juvenile rhesus monkeys a fish oil diet rich in DHA and other n-3 fatty acids for up to 129 weeks. The results of serial biopsy samples of the cerebral cortex indicated that the changes of brain fatty acid composition began as early as 1 week after fish oil feeding and stabilized at 12 weeks. The DHA content of the phosphatidylethanolamine of the frontal cortex increased progressively from 3.9 +/- 1.2 to 28.4 +/- 1.7 percent of total fatty acids. The n-6 fatty acid, 22:5, abnormally high in the cerebral cortex of n-3 deficient monkeys, decreased reciprocally from 16.2 +/- 3.1 to 1.6 +/- 0.4%. The half-life (t 1/2) of DHA in brain phosphatidylethanolamine was estimated to be 21 days. The fatty acids of other phospholipids in the brain (phosphatidylcholine, -serine, and -inositol) showed similar changes. The DHA content of plasma and erythrocyte phospholipids also increased greatly, with estimated half-lives of 29 and 21 days, respectively. We conclude that monkey cerebral cortex with an abnormal fatty acid composition produced by dietary n-3 fatty acid deficiency has a remarkable capacity to change its fatty acid content after dietary fish oil, both to increase 22:6 n-3 and to decrease 22:5 n-6 fatty acids. The biochemical evidence of n-3 fatty acid deficiency was completely corrected. These data imply a greater lability of the fatty acids of the phospholipids of the cerebral cortex than has been hitherto appreciated.  相似文献   

16.
To investigate the effect of docosahexaenoic acid (DHA) without other highly unsaturated fatty acids (HUFA) on n-3 and n-6 essential fatty acid (EFA) metabolism and fatty acid composition in mammals, a stable isotope tracer technique was used in adult rats fed diets with or without 1.3% of algal DHA in a base diet containing 15% of linoleic acid and 3% of alpha-linolenic acid over 8 weeks. The rats were administered orally a mixed oil containing 48 mg/kg body weight of deuterated linoleic and alpha-linolenic acids and euthanized at 4, 8, 24, 96, 168, 240, 360 and 600 h after administration of the isotopes. Fatty acid compositions and the concentrations of deuterated precursors and their respective metabolites were determined in rat liver, plasma, heart and brain as a function of time. DHA, docosapentaenoic acid and eicosapentaenoic acid in the n-3 EFA family were significantly increased in all organs tested in the DHA-fed group, ranging from 5% to 200% greater in comparison with the control group. The accumulation of the metabolites, deuterated-DHA and deuterated-docosapentaenoic acid n-6 was greatly decreased by 1.5- to 2.5-fold in the dietary DHA group. In summary, feeding preformed DHA led to a marked increase in n-3 HUFA content of rat organs at the expense of n-6 HUFA and also prevented the accumulation of newly synthesized deuterated end products. This is the first study which has isolated the effects of DHA on the de novo metabolism on both the n-6 and n-3 EFA pathways.  相似文献   

17.
Rats fed a semipurified diet supplemented with 3% (w/w) safflower oil [Saf, n-3 fatty acid deficient, high linoleic acid (18:2n-6)] through two generations exhibit decreased correct response ratios in a brightness-discrimination learning test compared with rats fed 3% perilla oil [Per, high alpha-linolenic acid (18:3n-3)]. This is associated with a decreased DHA (22:6n-3)-to-arachidonic acid (20:4n-6) ratio in brain lipids. In the first set of experiments, dietary oil was shifted from Saf to a mixture of 2.4% safflower oil plus 0.6% DHA after weaning (Saf-DHA), but all parameters measured in the learning test were essentially unchanged. Brain 22:6n-3 content of the Saf-DHA group reached that of the Per group but the levels of 20:4n-6 and docosatetraenoic acid (22:4n-6) did not decrease to those of the Per group at the start of the test. In the second set of experiments, dietary oil was shifted to a mixture of 0.6% safflower oil plus 1.2% oleic acid (OA) plus 1.2% DHA (Saf-OA-DHA group) with 18:2n-6 content comparable to that of the Per group. The Saf-OA-DHA group exhibited a learning performance similar to that of the Per group; brain 22:6n-3, 20:4n-6, and 22:4n-6 contents were also comparable to those of the Per group. These results indicate that the altered learning behavior associated with a long-term n-3 fatty acid deficiency is reversed by supplementing 22:6n-3 after weaning, when the levels of competing n-6 fatty acids in the diet and brain lipids are limited.  相似文献   

18.
We explored the uses of fish oil (active EPA-30) as a source of eicosapentaenate (EPA; 20:5 n-3), to young and old rats. We treated three subgroups of rats each comprising 20 young or old rats, respectively. The first group was kept on the basal ration (lab-pellet) as control diet, the second group was fed semi-purified diets contained 5% pig-fat (n-3 fatty acids deficient diet). The third group was fed a modified diet in which 50% of pig-fat was replaced by active EPA-30. Livers of young rats fed pig-fat had a drastic decrease in the amount of phosphatidylethanolamine (PE) and omega-3 polyunsaturated fatty acids (EPA, 20:5 n-3 and docosahexaenoic, DHA, 22:6 n-3) and compensatory increase of phosphatidylcholine, saturated fatty acids and n-6 polyunsaturated fatty acids in the liver phospholipids. In contrast, the liver of young rats fed active EPA-30 had large amounts of PE and concomitant enrichment in polyunsaturated fatty acids. The liver of old rats, fed on active EPA-30 supplemented diet had lower amounts of PE and there were no significant changes in the phospholipid fatty acid composition.  相似文献   

19.
The physiological activity of fish oil, and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affecting hepatic fatty acid oxidation was compared in rats. Five groups of rats were fed various experimental diets for 15 days. A group fed a diet containing 9.4% palm oil almost devoid of n-3 fatty acids served as a control. The test diets contained 4% n-3 fatty acids mainly as EPA and DHA in the form of triacylglycerol (9.4% fish oil) or ethyl esters (diets containing 4% EPA ethyl ester, 4% DHA ethyl ester, and 1% EPA plus 3% DHA ethyl esters). The lipid content of diets containing EPA and DHA ethyl esters was adjusted to 9.4% by adding palm oil. The fish oil diet and ethyl ester diets, compared to the control diet containing 9.4% palm oil, increased activity and mRNA levels of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes, though not 3-hydroxyacyl-CoA dehydrogenase activity. The extent of the increase was, however, much greater with the fish oil than with EPA and DHA ethyl esters. EPA and DHA ethyl esters, compared to the control diet, increased 3-hydroxyacyl-CoA dehydrogenase activity, but fish oil strongly reduced it. It is apparent that EPA and DHA in the form of ethyl esters cannot mimic the physiological activity of fish oil at least in affecting hepatic fatty acid oxidation in rat.  相似文献   

20.
We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号