首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of assays for antibodies to Encephalitozoon cuniculi in rabbits   总被引:1,自引:0,他引:1  
Two indirect immunofluorescence (IIF) assays, two enzyme-linked immunosorbent assays (ELISAs) and the carbon immunoassay (CIA) for determination of antibodies to Encephalitozoon cuniculi were compared using 210 sera of rabbits, 135 of which originated from seven infected colonies, while 75 originated from four uninfected colonies. There was no evidence of a difference between the different assays with respect to the number of positive sera. There was a clear correlation between the quantitative response measured by IIF and CIA and the other assays, and between both IIF tests, while no such correlation was found in the quantitative response measured by ELISAs, which might be explained by the less quantitative nature of the ELISA. Therefore quantitative determination of antibodies to E. cuniculi should be performed by IIF and not by ELISA. The nosographic sensitivities N1 and specificities N2 of the assays were > or = 0.94 and > or = 0.97 respectively. Small differences in N1 and N2 between the assays, although not statistically significant, were responsible for differences in the calculated predictive values of a positive test and of a negative test. As expected, the magnitude of these differences depended on the fraction of positive sera sampled from a given colony. There was strong evidence of such a difference between the fraction of positive sera found in different colonies, but the sample size from some colonies was too small to allow any conclusion, whether this was due to differences in the prevalences of the infection in the colonies or something else. We conclude that any of the assays will be suitable for the routine health monitoring of laboratory rabbit colonies for E. cuniculi infection, as recommended by the Federation of European Laboratory Animal Science Associations.  相似文献   

2.
Encephalitozoan cuniculi was discovered in a large specific pathogen-free rabbit colony during routine quality assurance testing. By using a modified India-ink immunoreaction test we were able to test the entire colony for antibodies to Encephalitozoon cuniculi. The prevalence of the disease was approximately 5%. All seropositive animals were culled, and another test of the entire colony, carried out 4 weeks later, revealed one seropositive rabbit which was also culled. Two subsequent screenings of the whole colony have shown no further seropositive animals.  相似文献   

3.
Between 1982 and 1987 sera from 4952 New Zealand White rabbits (Oryctolagus cuniculus) obtained from a single commercial supplier were tested for the presence of antibodies to Encephalitozoon cuniculi. A commercially available carbon immunoassay test kit was used. Initially 32.9% of the rabbits were seropositive with the number progressively decreasing to 2.3% by 1987. The reason for the significant decline in the incidence of infection was most likely due to a selection process for breeding stock instituted by the supplier based upon productivity, posture and weight of each animal.  相似文献   

4.
Rabbit antibodies against Encephalitozoon cuniculi were detected in an indirect microagglutination test using a bead substrate to which anti-rabbit immunoglobin G light and heavy chain antibodies were coupled. The test was positive using immune whole serum or F(ab)' and F(ab)'2 fragments of immunoglobin G but negative using the F(c) fragment. The reaction was blocked by saturating the beads with rabbit serum or by absorbing positive sera with excess Encephalitozoon cuniculi. The test provided a simple method to detect antibodies to Encephalitozoon cuniculi, did not require elaborate equipment and could be performed using frozen antigen.  相似文献   

5.
6.
The microsporidia are emerging human and veterinary pathogens known to infect every tissue type and organ system. Their infectious spore possesses a number of peculiar organelles, including the diagnostic polar tube. In a proteomics-driven effort to find novel components of this organelle in the human-pathogenic species Encephalitozoon cuniculi, we unexpectedly discovered a protein which localizes to punctate structures consistent with the appearance of relic mitochondria, or mitosomes. However, this novel protein did not colocalize with ferredoxin, a mitochondrial iron-sulfur cluster protein which shows a similar localization pattern by light microscopy. The distribution pattern of this protein thus suggests either a novel vesicular compartment that is similar to mitosomes in size and distribution, the presence of subdomains or branching architecture within mitosomes, or heterogeneity in the protein composition of E. cuniculi mitosomes.  相似文献   

7.
A dot-ELISA procedure was developed to detect antibodies against Encephalitozoon cuniculi. Sera from 84 rabbits, 22 dogs, 18 squirrel monkeys and 200 mice were tested by dot-ELISA and most also were tested by immunofluorescence. Comparison of the two tests showed that there was excellent agreement of the results (Kappa values greater than or equal to 0.74) in all four species. Dot-ELISA is a simple, quantitative, rapid alternative to immunofluorescence when large numbers of serum samples must be evaluated.  相似文献   

8.
Laboratory rabbits are commonly used for testing the tissue response of neural device biomaterials. Rabbits of many colonies in the U.S. are infected by the intracellular microsporidian parasite, Encephalitozoon cuniculi, with rates of infection ranging from 15 to 76% (1). Several authors have suggested that infection by this parasite may alter immune system response and experimental results. We report that infection by E. cuniculi made the interpretation of results more difficult and altered the animals' responsiveness to implanted platinum wires coated with various polymers such as glow discharge methane, Parylene C, or polyimide. Edema, neuronal and glial reaction, and inflammatory responses to the coated wires were quantitated at four sites in each animal. Inconsistency of response in all measured parameters was found, both between animals and between sites in infected animals. Infected animals showed the greatest variability, primarily in the degree of inflammatory reaction. Parylene C was found to induce the most severe inflammatory reaction, an unexpected finding. No consistent reaction to any of the coating materials was found in this study. We believe that this variability in response was primarily due to infection by E. cuniculi. Our results suggest that rabbits should not be used for tissue compatibility testing of neural device biomaterials until the animals are free of E. cuniculi infestation as demonstrated by serologic screening.  相似文献   

9.
The infectivity of Encephalitozoon cuniculi grown in cell cultures was determined in cultured cells and in wild and domestic rabbits. The ratio of the total to tissue culture viable count was 1,300 (median of seven determinations). The mean ratio of intact spore count to total count, as determined by electron microscopy was 0.12. Although variation between infectivity experiments was large, the median animal infective dose contained 51 FFU (cell culture focus-forming units) for wild rabbits (Oryctolagus cuniculus) and 40 FFU for domestic rabbits. These two infectivities were not statistically different.  相似文献   

10.
There are 3 strains of Encephalitozoon cuniculi that occur in mammals. Strain III is associated with clinical disease in dogs, although some can be asymptomatic carriers and excrete spores in their urine. Several cases of human E. cuniculi infection caused by strain III have been observed in immunocompromised patients, indicating that E. cuniculi should be considered a zoonotic agent. Encephalitozoon cuniculi can cause fatal disease in maternally-infected or young dogs. Clinical signs in these animals included blindness, encephalitis, retarded growth rate, and nephritis. Encephalitozoon cuniculi has also been associated with primary renal failure in adult dogs. The present study used the direct agglutination test (DAT, cut-off 1:50) and the indirect fluorescent antibody test (IFAT, cut-off 1:10) to examine the prevalence of antibodies to E. cuniculi in dogs from Brazil and Colombia. Using the DAG, 31 (27.4%) of 113 dogs from Brazil and 47 (18.5%) of 254 dogs from Colombia were seropositive. Nine (14.3%) of 63 dogs from Brazil and 18 (35.3%) of the 51 dogs from Colombia were seropositive by indirect immunofluorescent antibody test. These results indicate that dogs from Brazil and Colombia are exposed to E. cuniculi.  相似文献   

11.
Encephalitozoon cuniculi is a microsporidian parasite commonly found in rabbits that can infect humans, causing encephalitozoonosis. The prevalence of encephalitozoonosis is not well documented, even when many clinics suspect pet rabbits as being highly infected. This study investigated the seropositivity of E. cuniculi using ELISA. The examination of 186 rabbits using ELISA showed that 22.6% (42/186) were seropositive against E. cuniculi. In analysis with healthy status, all 42 seropositive sera were collected from clinically normal rabbits. Moreover, the gender and age of pet rabbits did not have anysignificant effect on E. cuniculi infection. To the best of our knowledge, this is the first report to describe the seroprevalence of E. cuniculi in pet rabbits and suggests that pet rabbits could act as an important reservoir of encephalitozoonosis for both pet animals and humans in Korea.  相似文献   

12.
Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.  相似文献   

13.
Antibodies to Encephalitozoon cuniculi were examined by enzyme-linked immunosorbent assay using E. cuniculi PTP2 recombinant protein and by Western blot analysis on a total of 472 dog serum samples that had been collected in Japan. Of these samples, 21.8% (103/472) had antibodies against E. cuniculi. Each of 5 serum samples that showed high (>1.0) or low (<0.1) OD value was selected randomly and further examined by Western blot using E. cuniculi-native antigens. All samples with high OD values reacted with specific E. cuniculi proteins, including an antigen of approximately 35 kDa corresponding with PTP2; sera with low OD values did not recognize this E. cuniculi band. This study is the first to demonstrate the prevalence of E. cuniculi infection in dogs in Japan.  相似文献   

14.
15.
Effect of fumagillin on in vitro multiplication of Encephalitozoon cuniculi   总被引:6,自引:0,他引:6  
Encephalitozoon cuniculi (Levaditi, Nicolau & Schoen) is an obligate intracellular pathogenic parasite of rabbits, carnivores, laboratory rodents, and a variety of other mammals. Cell cultures of rabbit and canine cells were infected with rabbit and dog isolates of E. cuniculi. Four days later 5 microgram/ml of fumagillin was introduced into the culture medium. The multiplication of the parasite was inhibited within 48 h and this effect was maintained as long as the antibiotic remained in the medium. There was no effect when spores and proliferative forms of the parasite were incubated with fumagillin before being used for infecting host cells. No infection occurred, however, if the antibiotic was added to the culture medium before introduction of E. cuniculi. On electron-microscopic examination, the treated parasites were found to have severe cytoplasmic swelling, vesicular distortion of the plasma membrane, and marked reduction in cytoplasmic ribosomes. it was concluded that fumagillin blocks multipliation of E. cuniculi in vitro. The drug may be useful for the treatment or prevention of spontaneous encephalitozoonosis.  相似文献   

16.
Sera collected from both naturally and artificially infected rabbits were found to show excellent correlation when examined for the presence of Encephalitozoon cuniculi antibodies using the immunoperoxidase and immunofluorescence tests. Out of 85 randomly selected rabbits, 21 were found to be serologically positive using both the tests. However, lesions which could be attributed to E. cuniculi infection were only demonstrated in 16.  相似文献   

17.
Two methods (manual and automated) for quantitation of viable versus dead Encephalitozoon cuniculi are reported. The manual method uses ethidium bromide and acridine orange to stain dead and viable organisms, respectively. The stained organisms are visually differentiated with the aid of a fluorescence microscope. The automated method uses propidium iodide to stain dead parasites, which are differentiated from viable unstained parasites with the aid of a flow cytometer. An automated cell counter (Coulter Counter) was used to count rapidly large numbers of samples and to improve the sensitivity of counting low concentrations of parasites. These methods will enhance investigators' abilities to conduct quantitative experiments on host defense mechanisms against E. cuniculi.  相似文献   

18.
High-pressure processing (HPP) has been shown to be an effective means of eliminating bacteria and destructive enzymes from a variety of food products. HPP extends the shelf life of products while maintaining the sensory features of food and beverages. In this study, we examined the effects of HPP on the infectivity of Encephalitozoon cuniculi spores in vitro. Spores were exposed to between 140 and 550 MPa for 1 min in a commercial HPP unit. Following treatment, the spores were loaded onto cell culture flasks or were kept for examination by transmission electron microscopy. No effect was observed on the infectivity of spores treated with 140 MPa. Spores treated with between 200 and 275 MPa showed reduction in infectivity. Following treatment of 345 MPa or more, spores were unable to infect host cells. No morphologic changes were observed in pressure-treated spores with transmission electron microscopy.  相似文献   

19.
Two methods (manual and automated) for quantitation of viable versus dead Encephalitozoon cuniculi are reported. The manual method uses ethidium bromide and acridine orange to stain dead and viable organisms, respectively. The stained organisms are visually differentiated with the aid of a fluorescence microscope. The automated method uses propidium iodide to stain dead parasites, which are differentiated from viable unstained parasites with the aid of a flow cytometer. An automated cell counter (Coulter Counter) was used to count rapidly large numbers of samples and to improve the sensitivity of counting low concentrations of parasites. These methods will enhance investigators' abilities to conduct quantitative experiments on host defense mechanisms against E. cuniculi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号