首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurophysiologic effects of combined 60-Hz electric (E) and magnetic (B) fields, of magnitudes comparable to those produced by high-voltage powerlines, were investigated in 10 monkeys (Macaca nemestrina). Six animals (experimental group) were each exposed to three different levels of E and B fields: 3 kV/m and 0.1 G, 10 kV/m and 0.3 G, and 30 kV/m and 0.9 G. Field exposures were preceded and followed by sham exposures, during which factors of field generation were present (e.g., heat, vibration, noise, etc.) without E and B fields. Each of the five segments (i.e., the three exposure segments and the initial and final sham exposure segments) lasted 3 weeks. Animals were exposed for 18 h/day (fields on at 1600 h, off at 1000 h). Four other animals (external control group) were given sham exposure for the entire 15-week period. Auditory, visual, and somatosensory evoked potentials were recorded twice a week, during the daily 6-h field-off period. E- and B-field exposure had no effect on the early or mid-latency evoked potential components, suggesting that exposure at these levels has no effect on peripheral or central sensory afferent pathways. However, there was a statistically significant decrease in the amplitudes of late components of the somatosensory evoked potential during the 10kV/m and 0.3 G, and 30 kV/m and 0.9 G exposure levels. This result is possibly related to the opiate antagonist effect of electromagnetic field exposure reported by others.  相似文献   

2.
We exposed Macaca nemestrina (pig-tailed macaques) to electric (E) and magnetic (B) fields ranging in intensity from 3 kV/m and 0.1 G to 30 kV/m and 0.9 G for three 21-day (d) periods. Experimental animals were exposed to sham E and B fields for two 21-d periods, one prior to and one following actual exposure to E and B fields, resulting in a total of five 21-d periods. Control animals were exposed to sham E and B fields for the entire 105-d interval. At the end of each 21-d period cerebrospinal fluid (CSF) was obtained by lumbar puncture and analyzed for concentrations of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), metabolites of dopamine and serotonin neurotransmitters, respectively, by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Results are based on an examination of six experimental and four control animals. Exposure to E and B fields at all strengths was associated with a significant decline in CSF concentrations of both HVA and 5-HIAA when statistical comparisons were made against values obtained at the end of the preexposure interval. However, HVA returned to preexposure levels during the postexposure period, while 5-HIAA did not. No significant change in the concentrations of HVA or 5-HIAA was noted in the control animals. These results strongly suggest that exposure of the nonhuman primate to E and B fields can significantly affect specific biochemical estimates of nervous system function. These effects may involve alterations either in neuronal activity or in the activity of enzymes that catabolize the neurotransmitters.  相似文献   

3.
We found in a previously reported study that exposure to a 30-kV/m, 60-Hz electric field had significant effects on the social behavior of baboons. However, it was not established whether or not the effects were related specifically to the 30-kV/m intensity of the field. A new experiment was conducted to determine whether or not exposure to a 60-Hz electric field at 60 kV/m would produce like changes in the baboons' social behavior. We exposed one group of eight male baboons to an electric field 12 hours a day, 7 days a week, for 6 weeks. A second group of eight animals was maintained under sham-exposure (control) conditions. Rates of performing on each of six categories of social behavior and on four categories of nonsocial behavior were used as criteria for comparing exposed with unexposed subjects and for within-group comparisons during three six-week experimental periods: Pre-Exposure, Exposure, and Post-Exposure. The results indicate that (1) during the exposure period, exposed animals exhibited statistically significant differences from controls in means of performance rates based on several behavioral categories; (2) across all three periods, within-group comparisons revealed that behaviors of exposed baboons were significantly affected by exposure to the electric field; (3) changes in performance levels probably reflect a stress response to the electric field; and (4) the means of response rates of animals exposed at 60 kV/m were higher, but not double, those of animals exposed at 30 kV/m. As in the 30-kV/m experiment, animals exposed at 60 kV/m exhibited significant differences in performances of Passive Affinity, Tension, and Stereotypy. Mean rates of performing these categories were 122% (Passive Affinity), 48% (Tension), and 40% (Stereotypy) higher in the exposed group than in the control group during exposure to the 60-kV/m field.  相似文献   

4.
The purpose of this study was to reproduce and extend an earlier investigation of the effects of human exposure to combined, 60-Hz electric and magnetic fields. This paper presents the neurobehavioral results. Thirty men participated in one training session and four testing sessions. Subjects were randomly assigned to two groups. The 18 subjects in Group I were exposed (9 kV/m, 20 microT) and sham exposed in two counterbalanced orders. In Group II, half of 12 subjects were exposed (9 kV/m, 20 microT) every session, and the remaining half were sham exposed every session. The study was doubly blinded. Measures of cardiac interbeat interval, event-related brain potentials, and performance were obtained before, during, and after exposures. As in the earlier study, exposure to the combined field resulted in a statistically significant slowing of heart rate, in changes in late components of event-related brain potentials, and in decreased errors on a choice reaction-time task. In addition, field effects on several other measures approached statistical significance. The physiological measures obtained during exposure indicated that effects were greatest soon after the field was switched on, and again when it was switched off. The data indicate that changes in exposure level may be more important than duration of exposure for producing effects in human beings.  相似文献   

5.
The pathological effects of exposure to an electromagnetic field (EMF) during adolescence may be greater than those in adulthood. We investigated the effects of exposure to 900 MHz EMF during adolescence on male adult rats. Twenty-four 21-day-old male rats were divided into three equal groups: control (Cont-Gr), sham (Shm-Gr) and EMF-exposed (EMF-Gr). EMF-Gr rats were placed in an EMF exposure cage (Plexiglas cage) for 1 h/day between postnatal days 21 and 59 and exposed to 900 MHz EMF. Shm-Gr rats were placed inside the Plexiglas cage under the same conditions and for the same duration, but were not exposed to EMF. All animals were sacrificed on postnatal day 60 and the hearts were extracted for microscopic and biochemical analyses. Biochemical analysis showed increased levels of malondialdehyde and superoxide dismutase, and reduced glutathione and catalase levels in EMF-Gr compared to Cont-Gr animals. Hematoxylin and eosin stained sections from EMF-Gr animals exhibited structural changes and capillary congestion in the myocardium. The percentage of apoptotic myocardial cells in EMF-Gr was higher than in either Shm-Gr or Cont-Gr animals. Transmission electron microscopy of myocardial cells of EMF-Gr animals showed altered structure of Z bands, decreased myofilaments and pronounced vacuolization. We found that exposure of male rats to 900 MHz EMF for 1 h/day during adolescence caused oxidative stress, which caused structural alteration of male adolescent rat heart tissue.  相似文献   

6.
Sprague-Dawley male rats, maintained in a 14:10 h light:dark cycl were exposed for 30 days (starting at 56 days of age) to a 65 kV/m, 60 Hz electric field or to a sham field for 20 h/day beginning at dark onset. Pineal N-acetyltransferase (NAT), hydroxy-indole-o-methyl transferase (HIOMT), and melatonin as well as serum melatonin were assayed. Preliminary data on unexposed animals indicated that samples obtained 4 h into the dark period would reveal either a phase delay or depression in circadian melatonin synthesis and secretion. Exposure to electric fields for 30 days did not alter the expected nighttime increase in pineal NAT, HIOMT, or melatonin. Serum melatonin levels were also increased at night, but the electric field-exposed animals had lower levels than the sham-exposed animals. Concurrent exposure to red light and the electric field or exposure to the electric field at a different time of the day-night period did not reduce melatonin synthesis. These data do not support the hypothesis that chronic electric field exposure reduces pineal melatonin synthesis in young adult male rats. However, serum melatonin levels were reduced by electric field exposure, suggesting the possibility that degradation or tissue uptake of melatonin is stimulated by exposure to electric fields. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Two experiments were carried out to assess the effects of electric and magnetic fields (EMF) on blood thyroxine (T4) in dairy cattle. In experiment 1, 16 lactating pregnant Holstein cows were exposed to 10 kV/m, 30 microTesla (microT) EMF. The animals were divided into two groups of eight animals each. Each group was exposed to EMF according to one of two treatment sequences of three periods of 28 days each. Sequence 1 was EMF OFF-ON-OFF and sequence 2 was EMF ON-OFF-ON. During the last day of each treatment period, blood samples were collected every 4 h for 24 h to estimate T4 plasma concentrations. In experiment 2, 16 nonlactating, nonpregnant, multiparous Holsteins were exposed to 10 kV/m, 30 microT EMF. The animals were divided into two groups of eight animals each. Each group was exposed to EMF according to one of the two treatment sequences described above, except that each period amounted to the number of days corresponding to one estrous cycle. During treatment, blood samples were collected every other day for T4 analysis. In both experiments, the light cycle emulated a short photoperiod (8 h light/16 h dark). During the ON periods, the animals were exposed to EMF for 16 h, 8 h of the light period plus the first 8 h of during the dark period. In experiment 1, exposed animals did not have any change in T4 plasma concentrations due to treatment (P = .0968), but, the time of sample collection revealed a significant difference (P = .0012). In experiment 2, the effect of period (P = .0009) and the treatment by days interaction (P = .0003) were statistically significant. We conclude that a worst case scenario exposure of dairy cattle to 10 kV/m, 30 microT EMF influences, in a moderate fashion, the blood levels of thyroxine.  相似文献   

8.
Using a crossover experimental design, we evaluated our earlier findings that exposure to a 30 kV/m, 60 Hz electric field for 12 hours per day, 7 days per week for 6 weeks produced significant changes in the performance rates of social behaviors among young adult male baboons. In the crossover experiment, the former control group was exposed to a 30 kV/m, 60 Hz electric field for 3 weeks. Only an extremely small, incidental magnetic field was generated by the exposure apparatus. We found that electric-field exposure again produced increases in the performance rates that index Passive Affinity, Tension, and Stereotypy. These findings, combined with results from our other electric-field experiments, indicate that exposure to strong electric fields, in the absence of associated magnetic fields, consistently produces effects that are expressed as increases in rates of performance of social behaviors in young adult male baboons.  相似文献   

9.
This human exposure study examined the relationship between field strength and biological response and tested whether the exposure levels at which the greatest effects occur differ for different endpoints. Three matched groups of 18 men each participated in two 6 h exposure test sessions. All subjects were sham exposed in one session. In the other session, each group of subjects was exposed at a different level of combined electric and magnetic field strength (low group: 6 kV/m, 10 μT; medium group: 9 kV/m, 20 μT; and high group: 12 kV/m, 30 μT). The study was performed double blind, with exposure order counterbalanced. Significant slowing of heart rate, as well as alterations in the latency and amplitude of event-related brain potential measures derived from the electro encephalogram (EEG), occurred in the group exposed to the 9 kV/m, 20 μT combined field (medium group). Exposure at the other field strength levels had no influence on cardiac measures and differential effects on EEG activity. Significant decrements in reaction time and in performance accuracy on a time estimation task were observed only in the low group. These results provide support for the hypothesis that humans may be more responsive to some combinations or levels of field strength than to others and that such differences in responsivity may depend, in part, on the endpoint of interest. © 1994 Wiley-Liss, Inc.  相似文献   

10.
White-footed mice, Peromyscus leucopus, were exposed to 60-Hz electric fields to study the relationship between field strength and three measures of the transient arousal response previously reported to occur with exposures at 100 kV/m. Five groups of 12 mice each were given a series of four 1-h exposures, separated by an hour, with each group exposed at one of the following field strengths: 75, 50, 35, 25, and 10 kV/m; 8 additional mice were sham-exposed with no voltage applied to the field generator. All mice were experimentally naive before the start of the experiment, and all exposures occurred during the inactive (lights-on) phase of the circadian cycle. The first exposure produced immediate increases in arousal measures, but subsequent exposures had no significant effect on any measure. These arousal responses were defined by significant increases of gross motor activity, carbon dioxide production, and oxygen consumption, and were frequently recorded with field strengths of 50 kV/m or higher. Significant arousal responses rarely occurred with exposures at lower field strengths. Responses of mice exposed at 75 and 50 kV/m were similar to previously described transient arousal responses in mice exposed to 100-kV/m electric fields. Less than half of the mice in each of the field strength groups below 50 kV/m showed arousal responses based on Z (standard) scores, but the arousals of the mice that did respond were similar to those of mice exposed at higher field strengths. Polynomial regression was used to calculate the field strength producing the greatest increases for each of the arousal measures. The results show that the amplitude of the transient arousal response is related to the strength of the electric field, but different measures of arousal may have different relationships to field strength.  相似文献   

11.
The effect of power frequency electric field (EF) on nerve regeneration was investigated on a rat peroneal nerve crush injury model. The animals were assigned to three groups: 50 Hz EF and Static EF groups were exposed at 10 kV/m. The sham group was kept in the same setting without any EF applications. EF was uninterruptedly applied for 21 days postoperatively. Repeated measures analysis of daily walking tracks during EF exposure demonstrated lower toe spread recovery (TSR) in the 50 Hz EF group. Significant difference across the groups was found only at days 7, 8, 12, 16, 17, 20, and 21 when TSR was analyzed for each measurement time. Print length recovery and peroneal function index did not differ across the groups. Walking track parameters were found to recover to their baseline values by day 28 in all groups. Day 14 but not day 21 measurements revealed smaller nerve cross-sectional area, lower total regenerating axon area, and higher mean myelin debris area in 50 Hz EF group. Both day 14 and 21 measurements revealed higher total myelin debris area, lower EDL muscle weight, and lack of significant enlargement in nerve cross-section distal to the injury, compared to the normal counterpart in 50 Hz EF group. All differences were in keeping with lower rates of Wallerian degeneration and nerve regeneration in 50 Hz EF group. When walking track, histomorphometry and muscle weight are considered individually, their differences across the groups may appear to be subtle to derive a conclusion for a 50 Hz EF effect. However, their concordance with each other in direction of effect suggests that continuous 50 Hz EF exposure has a weak effect that is detrimental mostly to the rate of early nerve regeneration in this axonotmetic injury model. Recovery of walking tracks was not different between Static EF and Sham groups. This suggests that the surface charges that may indirectly affect walking behaviors of the rats, do not account for the lower recovery of TSR in 50 Hz EF group. Differences in nerve regeneration between 50 Hz EF and Static EF groups suggests that electric induction may be required for pure EF effects even though the estimated density of induced fields is not above the endogenous background level for the 50 Hz EF exposure in this study.  相似文献   

12.
We have recently reported that exposure of pregnant rats to 60 Hz at field strengths up to 0.5 mT during the entire period of pregnancy did not induce any biologically significant effects on both pregnant dams and embryo-fetal development. The present study was carried out to investigate the potential effects of gestational and lactational MF exposure on pregnancy, delivery, and lactation of dams and growth, behavior, and mating performance of their offspring in rats. Timed-pregnant female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz magnetic field (MF) at field strengths of 0 (sham control), 5 microT, 83.3 microT, or 0.5 mT. Dams received MF or sham exposures for 21 h/day from gestational day 6 through lactational day 21. Experimentally generated MF was monitored continuously throughout the study. No exposure-related changes in clinical signs, body weight, food consumption, pregnancy length, and necropsy findings were observed in dams. Parameters of growth, behavior, and reproductive performance of offspring showed no changes related to MF exposure. There were no adverse effects on embryo-fetal development of F2 offspring from dams exposed to MF. In conclusion, exposure of pregnant SD rats to 60 Hz at field strengths up to 0.5 mT from gestational day 6 to lactational day 21 did not produce biologically significant effects in dams, F1 offspring, or F2 fetuses.  相似文献   

13.
In repeated short-term tests (four sessions, each of 45-minute duration), and one longer test (a 23.5-hour session), behavior of rats was evaluated in a long, narrow shuttlebox. One side of the box was exposed to an electric field at various strengths, while a visually identical opposite side was shielded from exposure. In the short-term tests, rats generally remained shielded from electric fields of 90 kV/m and greater during the first session, and maintained this response in subsequent sessions. In the longer test, this same preference response was demonstrated at field strengths of 75 kV/m and greater; however, at 25 and 50 kV/m, rats exhibited a statistically significant preference for the exposed region of the shuttlebox, but only during the light portion of a 12-hour light: 12-hour dark cycle. Exposed animals made more traverses than sham-exposed controls between the two ends of the shuttlebox during the first hour of the test. The experimental data support the hypothesis that the observed behavioral effects are the result of direct interaction of the electric field with the animal, and not the result of secondary factors such as electric shock, corona discharge, audible noise, ozone, or vibration of the experimental apparatus.  相似文献   

14.
Levels of brain neurotransmitters and their metabolites, as well as concentrations of enzymes associated with their synthesis and metabolism, fluctuate during the day in patterns defined as circadian. The present study examined these rhythms in albino rats exposed to 60-Hz electric fields. Thirty-six animals were exposed to a 39 kV/m field for 4 weeks, 20 h/day, in a parallel-plate electrode system. A group of 36 sham animals was similarly handled and housed in a nonenergized exposure system. On the sampling day, animals were sacrificed at 4-h intervals throughout the 24-h day. Brains were removed, dissected, and kept frozen until chemically analyzed. The levels of biogenic amines and their acidic metabolites in the striatum, hypothalamus, and hippocampus were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) methods. Repeated exposure to 60-Hz electric fields produced significant alterations in the diurnal rhythms of several biogenic amines: dihydroxyphenylacetic acid (DOPAC, the primary metabolite of dopamine in the rat) in the striatum, and norepinephrine, dopamine, and 5-hydroxyindoleacetic acid (5-HIAA; serotonin metabolite) in the hypothalamus. Levels of serotonin in the striatum and hypothalamus showed clear circadian patterns that was not affected by the field. No diurnal or field-related changes were observed in the hippocampal amines.  相似文献   

15.
This study was designed to assess the effect of exposure to long-term extremely low-frequency electric and magnetic fields (ELF-EMF) from a 500 kV transmission line on IL-1 and IL-2 activity in sheep. The primary hypothesis was that the reduction in IL-1 activity observed in our two previous short-term studies (10 months) was due to EMF exposure from this transmission line. To repeat and expand these studies and to characterize the components of EMF responsible for the previously observed reduction in IL-1 activity, the current experiment examined not only the effect of exposure to electric and magnetic fields, but also the magnetic field component alone. In the current study, IL-2 was examined to characterize the effects of EMF exposure on an indicator of T cell responses. 45 Suffolk ewe lambs were randomized into three groups of 15 animals each. One group of animals was placed in the EMF pen, located directly beneath the transmission line. A second group was placed in the shielded MF (magnetic field only) pen, also directly beneath the transmission line. The third group of animals was placed in the control pen located several hundred meters away from the transmission line. During the 27 month exposure period, blood samples were taken from all animals monthly. When the data were analyzed collectively over time, no significant differences between the groups were found for IL-1 or IL-2 activity. In previous studies ewe lambs of 8-10 weeks of age were used as the study animals and significant differences in IL-1 activity were observed after exposure of these animals to EMF at mean magnetic fields of 3.5-3.8 microT (35-38 mG) and mean electric fields of 5.2-5.8 kV/m. At the start of the current study EMF levels were reduced as compared to previous studies. One interpretation of the current data is that magnetic field strength and age of the animals may be important variables in determining whether EMF exposure will affect IL-1 activity.  相似文献   

16.
Rats were exposed to a 60-Hz electric field at an unperturbed field strength of 100 kV/m to determine its affect on bone growth and fracture repair. Exposure of immature male and female rats for 20 h/day for 30 days did not alter growth rate, cortical bone area, or medullary cavity area of the tibia. In another experiment, midfibular osteotomies were performed and the juvenile rats were exposed at 100 kV/m for 14 days. Evaluation by resistance to deformation and breaking strength indicated that fracture repair was not as advanced in the exposed animals as in the sham-exposed animals. In another experiment measurements of resistance to deformation were made in adult rats at 16, 20, and 26 days after osteotomy. Fracture repair was slower in exposed compared to control animals at day 20 and, to a lesser extent, at day 16, but not at day 26.  相似文献   

17.
Two experiments were conducted to test the hypothesis that electric and magnetic field (EMF) exposure may result in endocrine responses similar to those observed in animals exposed to long days. In the first experiment, 16 lactating, pregnant Holstein cows were assigned to two replicates according to a crossover design with treatment switchback. All animals were confined to wooden metabolic cages and maintained under short day photoperiods (8 h light/16 h dark). Treated animals were exposed to a vertical electric field of 10 kV/m and a horizontal magnetic field of 30 microT (EMF) for 16 h/day for 4 weeks. In a second, similar experiment, 16 nonlactating, nonpregnant Holstein cows subjected to short days were exposed to EMF, using a similar protocol, for periods corresponding to the duration of one estrous cycle. In the first experiment, circulating MLT concentrations during the light period showed a small numerical decrease during EMF exposure (P < .05). Least-square means for the 8 h light period were 9.9 versus 12.4 pg/ml, SE = 1.3. Melatonin concentrations during the dark period were not affected by the treatment. A similar trend was observed in the second experiment, where MLT concentrations during the light period tended to be lower (8.8 pg/ml vs. 16.3 pg/ml, P < .06) in the EMF exposed group, and no effects were observed during the dark period. Plasma prolactin (PRL) was increased in the EMF exposed group (16.6 vs. 12.7 ng/ml, P < .02) in the first experiment. In the second experiment, the overall PRL concentrations found were lower, and the mean plasma PRL concentration was not affected by treatment. These experiments provide evidence that EMF exposure may modify the response of dairy cows to photoperiod.  相似文献   

18.
An exposure chamber was designed to study the effects of electric and magnetic fields (EMF) on oestrous cycles, hormonal profile during gestation, pineal function, quantity and quality of milk production, feed intake, and central nervous system of dairy cattle. The chamber was 15 x 10 x 3 m; and the control system was fully computerized so that the field intensities can be varied and monitored continuously, on site or remotely. During exposure to EMF, milk production, feed consumption, and health were monitored closely and blood and cerebral spinal fluid were continuously sampled. The chamber characteristics allow use of a wide range of exposure such as electric fields (0-30 kV/m) and magnetic fields (0-100 microT) at frequencies ranging from 45 to 3000 Hz.  相似文献   

19.
Sixteen multiparous nonpregnant lactating Holstein cows (each weighing 662 ± 65 kg in 150.4 ±40 day of lactation) were confined to wooden metabolic cages with 12:12 h light:dark cycle during the experiment. The cows were divided into two sequences of eight cows each and exposed to electric and magnetic fields (EMF) in an exposure chamber. This chamber produced a vertical electric field of 10 kV/m and a uniform horizontal magnetic field of 30 μT at 60 Hz. One sequence was exposed for three estrous cycles of 24 to 27 days. During the first estrous cycle, the electric and magnetic fields were off; during the second estrous cycle, they were on; and during the third estrous cycle, they were off. The second sequence was also exposed for three 24 to 26 days estrous cycles, but the exposure to the fields was reversed (first estrous cycle, on; second estrous cycle, off; third estrous cycle, on). The length of each exposure period (21 to 27 days) varied according to the estrous cycle length. No differences were detected in plasma progesterone concentrations and area under the progesterone curve during estrous cycles between EMF nonexposed and exposed periods (2.28 ±0.17 and 2.25 ± 0.17; and 24.5 ± 1.9 vs. 26.4 ± 1.9 ng/ml, respectively). However, estrous cycle length, determined by the presence of a functional corpus luteum detected by concentrations of progesterone equal to or more than 1 ng/ml plasma, was shorter in nonexposed cows than when they were exposed to EMF (22.0 ± 0.9 vs. 25.3 ± 1.4 days). Bioelectromagnetics 19:438–443, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The effects of extremely low frequency (ELF) electromagnetic (EM) fields on the maturation of the rat cerebellum were studied. Newborn rats were exposed to 60 Hz electric and magnetic fields under three different combinations in a specially constructed apparatus. The pups were irradiated for 7–8 h daily, with a 30-min interruption for nursing. Pups were kept with their mothers for the remainder of the time. After approximately 1, 2, or 3 weeks of exposure, the pups were killed. Control pups were sham exposed. The somatic growth of the irradiated rats did not show any significant difference from shamexposed controls. At 1 kV/m and 10 gauss exposure, there was a small but statistically significant decrease in cerebellar mass. In rats exposed at 1 kV/m and 10 gauss, DNA and RNA levels were significantly higher than those in shara-exposed controls at 6 and 13 days of age, but at 20 days, these two biochemical constituents were similar in both groups of rats. The ELF-EM treatment had no effect on protein and cerebroside concentrations. In terms of age effects. DNA and RNA exhibited increases from 6 to 13 days of age, and declined from 13 to 20 days. Protein and cerebroside levels exhibited increases during the 6–20 day periods. In rats exposed at 100 kV/m and 1 gauss, the DNA levels were initially less than those of sham-exposed controls at 8 days of age, reached approximately the same levels at 14 days, and then were higher than those of controls at 22 days. There was. therefore, a significant ELF-EM effect as well as a significant interaction between age and ELF-EM exposure. In terms of age effects, DNA levels for both control and exposed animals increased from 8 to 14 days. From 14 to 22 days, DNA levels of exposed rats continued to increase while those of the controls decreased. This age effect was significant. RNA levels in both groups of animals showed increases from 8 to 14 days of age, but the increase was less for the irradiated animals than for the controls. From days 14 to 22. RNA levels for both groups showed a reduction, but the decrease was greater in the irradiated than in control rats. ELF-EM treatment significantly reduced protein levels at 8 days of age. but at 14 to 22 days, protein levels of exposed rats were higher than those of controls. The cerebroside levels were not affected by exposure treatments but increased with the age of the animals. Exposure to 100 kV/m and 10 gauss did not exert any effect on the concentrations of DNA, RNA, protein, and cerebroside at all three time points examined. Both DNA and RNA exhibited increases with age from 6 to 13 days, and leveled off from 13 to 20 days. Protein and cerebroside levels also showed corresponding increases with the age of the animals. Morphological observations revealed no detectable changes in the irradiated animals in any experimental group. Thus, only biochemical studies indicate that exposure at certain ELF-EM field combinations induces alterations in cerebellar maturation. These changes were clearly detectable in the early postnatal period but gradually diminished with time. ©1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号