首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, protein-free emulsions of defined lipid composition were shown capable of simulating either the metabolism of chylomicrons (chylomicron-like emulsion) or their remnants (remnant-like emulsion), depending on the content of free, unesterified cholesterol. To validate further the assumption that remnant-like and chylomicron-like emulsion have metabolic pathways in common with their natural counterparts, studies of competition for plasma removal were undertaken: the remnant-like emulsion labeled with [3H]triolein was injected sequentially twice in the carotid arteries of rats to compare the clearance of remnant-like emulsion of the second injection with the first (control). Prior to the second injection, a large bolus of the chylomicron-like emulsion or rat lymph chylomicron was injected, to check the hypothesis that remnant generated from chylomicron-like emulsion or natural chylomicrons could compete with and displace remnant-like emulsion particles from their tissue receptor sites. Experiments were also performed in rats treated with Triton WR-1339, to block the generation of remnants. Results showed that remnants derived from either natural chylomicrons or chylomicron-like emulsion both strongly competed with the remnant-like emulsion. In contrast, when transformation of remnants was prevented by Triton, the undegraded particles of chylomicron-like emulsion or natural chylomicron were unable to compete with or displace remnant-like emulsion from its sites of removal from the plasma. In agreement with plasma clearance data, the hepatic uptake of the remnant-like emulsion was inhibited by the surplus dose of natural chylomicrons. In contrast, the spleen uptake was unaffected by it.  相似文献   

2.
After intravenous injection, emulsions with compositions similar to chylomicrons behaved metabolically as described for chylomicrons, with faster removals of triacylglycerols than cholesteryl esters from the blood after injection into rats, and with greater uptakes of cholesteryl esters than triacylglycerols by the liver. In contrast, emulsions with a high content of free cholesterol showed equal removal rates from the blood of triacylglycerols and cholesteryl esters; and similar uptakes by the liver. This pattern of metabolism was that expected for a chylomicron core remnant particle. Emulsions poor in cholesteryl ester but rich in free cholesterol showed remnant-like behavior, whereas emulsions rich in cholesteryl ester but poor in free cholesterol were metabolized like nascent chylomicron particles. The amount of free cholesterol appeared to regulate metabolism by affecting the binding of apolipoproteins to the particle surface. Emulsions with a high content of free cholesterol bound less A-I, A-IV and C apolipoproteins, and the relative amount of apolipoprotein E was increased. All of these effects are consistent with the metabolic differences between chylomicrons and remnant particles, suggesting that the amount of free cholesterol plays a regulatory role in chylomicron metabolism.  相似文献   

3.
A systematic study was undertaken to observe the effects of dietary (dioleoyl) triacyl-sn-glycerol structure on chylomicron composition and metabolism. First studied was a series of 1,2-dioleoyl-3-(saturated)acyl-sn-glycerols, where the fatty acid esterified at the 3-position was varied from 14 to 24 carbons. Next a series of 1,3-dioleoyl-2-acyl glycerols was studied, with various fatty acids esterified at the glycerol 2-position. These stereospecific triacyl-sn-glycerols were fed to donor rats and lymph chylomicrons were isolated, analyzed, and reinjected into recipient rats to study their disappearance from plasma and delivery to tissues. As shown by their compositions, chylomicrons obtained after feeding triacylglycerols containing all sn-3 fatty acid of chain length greater than 20 carbons were under-represented, possibly due to poorer digestion by lipases, or poorer absorption by the intestine. The 18-carbon saturated chain fatty acid (stearic acid) was equally well represented in chylomicrons whether in the 2- or 3-position of the fed triacylglycerol. The presence of increased amounts of long-chain saturated fatty acids in donor chylomicron triacylglycerols affected the metabolism of chylomicrons injected into the bloodstream of recipient rats. In particular the rate of removal of labeled cholesteryl esters, tracing removal of the partially degraded chylomicron remnants was slowed by the saturated chains, with palmitic acid and the 20-carbon fatty acid, arachidic acid, showing the most severe effects. There were clear differences in the removal from plasma of injected lymph chylomicrons derived from fed triacylglycerols containing stearic acid in either the 2- or 3-position, with evidence for remnants from the symmetrical triacylglycerols being less rapidly removed from the circulating blood. This effect was investigated further by injected model emulsions of chylomicrons, where the 2-position was substituted with saturated or transunsaturated acyl chains. Quantitation of removal from the blood stream of these model lipoproteins confirmed that a saturated or transunsaturated long chain fatty acid at the 2-position of the emulsion triacylglycerols slowed remnant removal from the blood. In some cases, with both lymph chylomicron and with emulsions, the lipolytic step mediated by lipoprotein lipase was also slowed.  相似文献   

4.
Lipid emulsions were prepared with compositions similar to the triacylglycerol-rich plasma lipoproteins, but also incorporating added small amounts of monoacylglycerols. Control emulsions without monoacylglycerol were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. The emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the bloodstream, with the removal rates of triacylglycerols faster than those of cholesteryl esters. Much of the removed cholesteryl ester was found in the liver, but only a small fraction of the triacylglycerol, consistent with hepatic uptake of the triacylglycerol-depleted remnants of the injected emulsion. Emulsions incorporating added monooleoylglycerol or stearic acid were metabolized similarly. Added 1- or 2-monostearoylglycerol had no effect on triacylglycerol removal from plasma, but the removal rate of cholesteryl esters was decreased and less cholesteryl ester was found in the liver. These effects are similar to those recently described when emulsions and chylomicrons contained triacylglycerols with a saturated acyl chain at the glycerol 2-position, suggesting that saturated monoacylglycerol produced by the action of lipoprotein lipase may cause triacylglycerol-depleted remnant particles to remain in the plasma instead of being rapidly taken up by the liver.  相似文献   

5.
Human patients with familial hypercholesterolemia (FH) and Watanabe heritable hyperlipidemic rabbits (WHHL), while lacking normal receptors recognizing low-density lipoproteins (LDL), are said to have normal clearance of chylomicrons. In the present study, emulsions with a similar lipid composition to chylomicrons were injected intravenously in homozygous WHHL rabbits and normal control rabbits fed diet with low or high cholesterol. Radioactive labels tracing emulsion triolein and cholesteryl oleate were both removed rapidly from the bloodstream, with the removal rate of triolein always faster than that of cholesteryl oleate. This pattern was similar to the clearance of normal chylomicrons in rabbits or rats, and was consistent with the formation of remnant lipoproteins after hydrolysis of emulsion triolein by lipoprotein lipase, followed by hepatic uptake of the remnants. The removal of cholesteryl oleate was significantly slower in WHHL rabbits than in normal controls, suggesting that the absence of LDL receptor function led to impaired remnant clearance. Measured in post-heparin plasma, the activity of lipoprotein lipase was decreased in WHHL rabbits, but this was not associated with clear evidence of defective lipolysis of emulsion triolein. Apolipoprotein E did not appear to be deficient in WHHL rabbits. Plasma devoid of lipoproteins less than 1.006 g/ml from WHHL and normal control rabbits transferred similar amounts of apolipoprotein E to chylomicron-like emulsions after incubation. Impaired clearance of chylomicron remnants possibly contributes to the hypertriglyceridemia of WHHL rabbits and to accelerated atherogenesis when the function of LDL receptors is defective.  相似文献   

6.
Emulsions with lipid compositions similar to the triacylglycerol-rich lipoproteins were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. Radioactive labels tracing the emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the blood stream, but the removal rate of triacylglycerols was faster than that of cholesteryl ester. Most of the removed cholesteryl ester label was found in the liver, but only a small fraction of the triacylglycerol label was found in this organ, consistent with hepatic uptake of the remnants of the injected emulsion. Emulsions otherwise identical but excluding unesterified cholesterol were metabolized differently. The plasma removal of triacylglycerols remained fast, but the cholesteryl esters were removed very slowly. Heparin stimulated lipolysis, but failed to increase the rate of removal of cholesteryl esters from emulsions lacking cholesterol. Evidently, emulsions lacking cholesterol were acted on by the enzyme lipoprotein lipase, but the resultant triacylglycerol-depleted remnant particle remained in the plasma instead of being rapidly taken up by the liver. Therefore, the presence of emulsion cholesterol is a critical determinant of early metabolic events, and the findings point to a similar role for cholesterol in the natural triacylglycerol-rich lipoproteins.  相似文献   

7.
Previous studies showed a slower clearance of cholesterol-labeled lymph chylomicrons in genetically hypercholesterolemic rats (RICO) compared with normocholesterolemic rats. In this study, we compared rates of lipolysis and remnant clearance in RICO versus control normocholesterolemic rats of the same strain (RAIF) or with control Wistar rats, by injecting chylomicron-like lipid emulsions labeled with 14C-triolein to trace lipolysis, and 3H-cholesteryl ester to trace remnant clearance. Our findings showed slower clearance of chylomicron remnants in RICO compared with control RAIF or with control Wistar rats. During the light period, the clearance of lipids from chylomicron-like lipid emulsions injected intravenously was significantly slower in RICO rats compared with normocholesterolemic control rats of the same strain, RAIF. Within the RICO group, clearance of emulsion triolein (TO) was faster during the dark period compared with the light period. In contrast, however, the clearance of the emulsion remnants traced by cholesteryl oleate (CO) was slower during the dark period. This behaviour was not found within the Wistar group, where the clearances of TO and CO were similar in the light and dark period. Hepatic clearance of chylomicron remnants is mediated primarily by the low density lipoprotein (LDL) receptor, the expression of which shows diurnal variation. In both Wistar and RICO rats, the expression of LDL receptors was highest during the dark period. The LDL receptors in hepatic microsomal membranes from RICO rats migrated faster on SDS polyacrylamide gel electrophoresis when compared with normal Wistar and the RAIF. However in hepatic plasma membranes the LDL receptors from RICO and Wistar rats appeared identical after immunoblotting. Furthermore the LDL receptors from RICO and Wistar rats responded similarly to treatment with neuraminidase. An alteration in post-translational processing of the LDL receptor could possibly account for the slower clearance of chylomicron remnants in the RICO.  相似文献   

8.
Metabolism of protein-free lipid emulsion models of chylomicrons in rats   总被引:4,自引:0,他引:4  
Emulsions were prepared by ultrasonication of mixtures of triolein, cholesteryl oleate, phosphatidylcholine and cholesterol in aqueous dispersions, then purified by ultracentrifugation. After injection into rats, the metabolism of the artificial, protein-free emulsions was comparable to the metabolism of chylomicrons collected from rat intestinal lymph during the absorption of fat. Like chylomicrons, the emulsion triacylglycerol was removed from the plasma more quickly than emulsion cholesteryl ester. Also like chylomicrons, much more emulsion cholesteryl ester than triacylglycerol appeared in the liver 10 min after injection, and only trace amounts appeared in the spleen. Because the artificial emulsions gained apolipoproteins when incubated with plasma, their metabolism was probably facilitated by the recipient rat plasma apolipoproteins and so, in rats made apolipoprotein-deficient by treatment with estrogen, the removal of emulsions from the plasma was slowed. Removal was also slowed in hyperlipidemic rats fed a high-fat, high-cholesterol diet to expand the plasma pools of the triacylglycerol-rich lipoproteins and remnants. The results indicate that the metabolism of lymph chylomicrons can be modeled by artificial, protein-free lipid emulsions not only in the initial partial hydrolysis by lipoprotein lipase, but also in the delivery of a remnant-like particle to the liver.  相似文献   

9.
Elevated plasma concentration of chylomicron remnants may be causally related to atherosclerosis in obesity. We examined the effect of atorvastatin on chylomicron remnant metabolism in 25 obese men with dyslipidaemia. A remnant-like emulsion labeled with cholesteryl [(13)C]oleate was injected intravenously into patients; the fractional catabolic rate (FCR) of the remnant-like emulsion was determined by measurement of (13)CO(2) in the breath and analyzed using compartmental modelling. Compared with placebo, atorvastatin significantly decreased the plasma concentrations of total cholesterol, triglycerides, LDL cholesterol, apolipoprotein B (apoB), and lathosterol (P < 0.001). ApoB-48 and remnant-like particle-cholesterol (RLP-C) both decreased significantly by 23% (P = 0.002) and 33% (P = 0.045), respectively. The FCR of the remnant-like emulsion increased significantly from 0.054 +/- 0.008 to 0.090 +/- 0.010 pools/h (P = 0.002). The decrease in RLP-C was associated with the decrease in plasma triglycerides (r = 0.750, P = 0.003). Furthermore, the change in FCR of remnant-like emulsions was inversely associated with the change in LDL-C (r = -0.575, P = 0.040), suggesting removal of LDL and chylomicron remnants by similar hepatic receptor pathways. We conclude that in obese subjects, inhibition of cholesterol synthesis with atorvastatin decreases the plasma concentrations of both LDL-C and triglyceride-rich remnants and that this may be partially due to an enhancement in hepatic clearance of these lipoproteins.  相似文献   

10.
We have developed a stable isotope breath test for the assessment of chylomicron remnant metabolism and report the results from the breath test in human subjects selected for disorders of chylomicron or remnant metabolism. In type I hyperlipemia, the phenotype is extreme hypertriglyceridemia due to a lack of lipoprotein lipase activity, which causes the failure of remnant formation. The type III dyslipidemia phenotype is caused by the inefficient removal of chylomicron remnants from plasma, generally because of homozygosity for apolipoprotein E2 alleles. The breath test was predicted to be abnormal in type III hyperlipemia, whereas a priori in type I hyperlipemia defective remnant clearance was not anticipated. Subjects were injected with lipid emulsions prepared with a composition similar to normal chylomicron remnants. The emulsions contained cholesteryl ester incorporating the stable nonradioactive isotope (13)C in the fatty acid moiety. End exhalation breath was collected at intervals after intravenous injection of the remnant-like emulsions and analyzed for (13)C enrichment by isotope-ratio mass spectrometry. Compared with the group of normolipemic men, the fractional catabolic rate of remnants measured by the breath test was significantly decreased (P = 0.006) in subjects with type III dyslipidemia. In the group with type I hyperlipemia, the fractional catabolic rate was not different (P = 0.233) from the control group. Therefore, the underlying capacity for remnant catabolism was normal in this group of markedly hypertriglyceridemic subjects.By short-circuiting the step of lipolysis, the remnant-like emulsion breath test provides direct information about remnant clearance and metabolism, which should assist in investigations of postprandial lipid metabolism.  相似文献   

11.
In rats, remnant particles derived from chylomicron-like emulsions containing 1,3-dioleoyl-2-stearoylglycerol (OSO) are removed from plasma more slowly than remnants derived from triolein emulsions. The effect associated with a saturated acyl chain at the glycerol 2-position could be reproduced by incorporating 2-stearoylglycerol (MS) in a triolein emulsion. When MS solubilized with rat albumin or in plasma was injected before the injection of a triolein emulsion, clearance of the triolein emulsion was unchanged. The metabolic fate of MS, monitored with 14C-labelled MS, was similar whether incorporated in triacylglycerol emulsion or injected independently. More than 95% of MS had disappeared from the circulation by 5 min after the injection and the radioactivity was found in liver, spleen, muscle and adipose tissue. Some MS label appeared in plasma triacylglycerol. Remnants made in vitro by incubating triolein or OSO emulsions with post-heparin plasma showed no differences in their disappearance from plasma. With OSO emulsion, the in vitro remnants were found to contain more MS than remnants made in vivo in hepatectomized rats. Simultaneous injections of mixtures containing OSO and triolein emulsions, or triolein emulsions with and without MS, each labelled with either [3H]cholesteryl oleate or [14C]cholesteryl oleate showed consistently slower remnant removal and decreased liver uptake of the emulsions containing OSO or MS. Affinity columns and immunodiffusion all indicated that there was no difference in the amounts of apolipoprotein E associated with OSO or triolein particles. The protein spectra of in vivo remnants derived from OSO and triolein emulsion were also similar when examined by SDS-PAGE and isoelectric focusing gels. Our results show that the effects due to OSO or MS are mediated by the presence of MS in the emulsion particle surface, while indirect effects expressed in plasma or liver are excluded. The precise mechanism of the effect remains to be established, but it does not correlate with measurable changes in the spectra of apolipoproteins associated with the emulsion remnants.  相似文献   

12.
Lipid emulsions were prepared with a similar size and lipid composition to natural lymph chylomicrons, but in which the surface phospholipid was either egg phosphatidylcholine, dioleoyl-, dimyristoyl-, dipalmitoyl- or 1-palmitoyl-2-oleoylphosphatidylcholine (EYPC, DOPC, DMPC, DPPC or POPC). When injected into the bloodstream of conscious rats, the emulsions containing EYPC or POPC were metabolized similarly to natural chylomicrons, consistent with rapid lipoprotein lipase-mediated hydrolysis of triacylglycerols, followed by hepatic uptake of the remnants derived from the emulsions. Phospholipids from the injected emulsions were removed more slowly and became associated with the high-density lipoprotein fractions of the plasma. Emulsions containing DPPC were metabolized differently. Triacylglycerols disappeared very slowly from plasma, indicating lack of hydrolysis by lipoprotein lipase, and phospholipid radioactivity did not transfer to high-density lipoprotein. With emulsions containing DMPC, the plasma removal rates for emulsion triacylglycerols and cholesteryl esters were fast, but phospholipid radioactivity failed to transfer to the high-density lipoprotein fractions of plasma. With DOPC emulsions, clearances were slower than EYPC or POPC emulsions, but transfer to high-density lipoproteins was efficient. Therefore, an unsaturated chain at the glycerol 2-position was necessary for rapid hydrolysis by lipoprotein lipase and for efficient transfer of phospholipids to high-density lipoproteins. With an unsaturated chain at the glycerol 2-position, a saturated chain at the glycerol 1-position optimized the rate of remnant removal from the plasma.  相似文献   

13.
The aim of this work was to characterise the lipid and fatty acid composition of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) and to investigate their influence on the fatty acid profiles of the lipids of rat hepatocytes cultured in monolayers. Chylomicrons were prepared from the lymph collected from the thoracic duct of rats given an oral dose of fish or corn oil (high in n-3 and n-6 PUFA, respectively), and remnants were prepared in vitro from such chylomicrons using rat plasma containing lipoprotein lipase. The fatty acids predominating in the oils abounded also in their respective chylomicrons and remnants, especially in triacylglycerols. Chylomicrons as well as remnants contained small amounts of phospholipids and long-chain PUFA that were minor in, or absent from, the dietary oils, evidently provided by the intestinal epithelium. The incubation of hepatocytes for 6 h, with either n-3 or n-6 PUFA-rich remnants (0.25-0.75 mM triacylglycerol) resulted in a dose-dependent increase in the amount of triacylglycerols and phospholipids in the cells, which was not affected further by increasing the incubation time to 19 h. Whereas hepatocyte triacylglycerols mostly incorporated the PUFA predominating in each remnant type, the fatty acid profile of cell phospholipids was virtually unchanged. In addition, irrespective of whether they were enriched in n-3 or n-6 PUFA, remnants promoted a relative decrease in the amount of cholesteryl esters, a minor hepatocyte lipid class poor in PUFA. The results demonstrate that the hepatocyte fatty acid profile is modulated in a lipid-class specific way by the amount and type of dietary PUFA delivered to cells in chylomicron remnants.  相似文献   

14.
Abstract

Chylomicron remnants can penetrate into the artery wall, where they can initiate atherogenesis. Since it is difficult to isolate these particles from human blood because of contamination with other lipoproteins, the use of lipid emulsions as chylomicron remnant-like particles (CRLPs) has been proposed to study their metabolism. This study was aimed to evaluate the methodology for the preparation of CRLP. Artificial chylomicrons were prepared by sonication of a lipid mixture and separated by density gradient centrifugation. Lipid classes were analyzed by HPLC and fatty acids by GC. Particle size was measured by dynamic light scattering and the presence of apolipoprotein E by immunoblotting. The highest lipid content was found in the 60?<?Sf?<?400 fraction (Sf?=?Svedberg flotation rate), followed by the Sf?>?400. This latter fraction presented the highest triacylglycerol (TAG) concentration, which was dramatically reduced in the 20?<?Sf?<?60 fraction. Fatty acid composition in TAG and phospholipids resembled that of the standards used with little modifications. The repeatability of the method was excellent, showing relative standard errors below 10%. The mean size of the 60?<?Sf?<?400 and Sf?>?400 fractions, was 195.1 and 347.8?nm, respectively. The lipid analysis showed that Sf?>?400 particles resembled the composition of natural chylomicrons and the 60?<?Sf?<?400 particles that of chylomicron remnants, the range of particle size being more homogeneous in the 60?<?Sf?<?400 fraction. The method mentioned in this article is not only a reliable method for the preparation of CRLP, but also for native chylomicron-like particles, in terms of lipid composition and particle size.  相似文献   

15.
Binding and uptake of rat chylomicrons of different metabolic stages by the hepatic low-density-lipoprotein (LDL) receptor were studied. Pure chylomicrons, characterized by apolipoprotein B-48 devoid of contaminating B-100, were labelled in their cholesteryl esters. Lymph chylomicrons and serum chylomicrons, enriched in apolipoprotein E and the C-apolipoproteins, bound poorly to rat hepatic membranes. In contrast, chylomicron remnants, containing the apolipoproteins B-48 and E, bound with high affinity. Specific binding of remnants was virtually completely competed for by LDL free of apolipoprotein E. In addition, in ligand blots both remnants and LDL associated with the same protein with an Mr characteristic of the LDL receptor. Uptake of remnants during a single pass through isolated perfused rat livers was decreased to about 50% by an excess of LDL. It is concluded that rat chylomicron remnants are a ligand of the hepatic LDL receptor. The much higher affinity as compared with LDL is mediated by apolipoprotein E but not B-48, and is inhibited by the C-apolipoproteins. This explains why serum chylomicrons are not taken up by the liver, whereas remnants are rapidly removed from the circulation. Results from experiments in vivo suggest that the LDL receptor makes an important contribution to the hepatic uptake of remnants and may be the principal binding site of the liver responsible for remnant removal.  相似文献   

16.
The effects of exogenous apo E-3 and of cholesterol-enriched meals on the binding, cell association and proteolytic degradation of human chylomicrons and their remnants were determined in cultured human skin fibroblasts. Chylomicrons were prepared from plasma of normolipemic humans 4 h after a fat meal with normal or high cholesterol content. Remnants were obtained after incubation of chylomicrons with lipoprotein lipase in vitro. Cellular metabolism of chylomicrons was minimal, less than 10% that of LDL. Exogenous apo E-2 enhanced chylomicron metabolism by 3-4-fold. The cellular metabolism of remnants was 2.5-3.5-fold higher as compared to intact chylomicrons but their response to exogenous apo E-3 was considerably lower. The cellular metabolism of chylomicrons and chylomicron remnants obtained from subjects eating cholesterol-enriched fat meal was the highest either without or with added exogenous apo E-3. Yet, even in the preparation that exhibits the highest metabolic activity (apo E-3 enriched remnants from cholesterol-enriched meals) the absolute proteolytic degradation was about two-thirds that of LDL. We conclude that although LDL-receptors take up and degrade chylomicron remnants, the rate of catabolism of remnants by this route can not explain the rapid and complete remnant removal process as observed in vivo.  相似文献   

17.
Rat hepatocytes in monolayer cultures take up and degrade cholesteryl ester of isolated chylomicron remnants. The cholesteryl ester of native chylomicrons was metabolized at a slower rate. The uptake of cholesteryl ester was decreased by the presence of serum. The hydrolysis of cholesteryl ester but not the uptake or binding of chylomicron remnants by the cells was inhibited by chloroquine, which is known to inhibit the lysosomal degradation of protein and of low density lipoproteins by fibroblasts. Colchicine, which inhibits the hydrolysis of chylomicron cholesteryl ester after the uptake by the liver in vivo, had the same effect in hepatocyte monolayers.  相似文献   

18.
Remnant-like emulsions labeled with cholesteryl [(13)C]-oleate were prepared with lipid compositions similar to remnants derived from triacylglycerol-rich lipoproteins. When injected into the bloodstream of conscious mice, the remnant-like emulsions were metabolized in the liver leading to the appearance of (13)CO(2) in the breath. Previously, using this technique, we found that remnant metabolism was significantly impaired but not completely inhibited in mice lacking low density lipoprotein receptors (LDLr). We have now found in mice with non-functional low density lipoprotein receptor-related protein (LRP) that breath enrichment of (13)CO(2) was significantly decreased, indicating that the LRP also plays an important role in the metabolism of chylomicron remnants (CR). The enrichment of (13)CO(2) in the expired breath was negligible in mice lacking both LDLr and receptor-associated protein (-/-), essential for normal function of LRP. In mice pre-injected with gluthatione S-transferase-receptor-associated protein to block LRP binding, there was a marked inhibition of the appearance of (13)CO(2) in the expired breath of homozygous LDLr-deficient mice, supporting the role of LRP in vivo. Whether or not LDLr were present, in mouse and human fibroblast cells human apoE3 or E4 but not apoE2 were essential for binding of remnant-like emulsions, while lactoferrin and suramin completely inhibited binding. We conclude that in normal mice LDLr are important for the physiological metabolism of CR. When LDLr are absent the evidence supports a role for the LRP in the uptake of CR in liver cells and in fibroblasts, with binding characteristics for CR-associated apoE similar to LDLr.  相似文献   

19.
Hydrolysis by endothelial lipases of triacylglycerol-rich lipoproteins of diabetic origin were compared to lipoproteins of non-diabetic origin. The plasma lipoprotein fraction of density < 1.006 g/ml, including chylomicrons and VLDL, were incubated in vitro with post-heparin plasma (PHP) lipases. The lipoproteins of diabetic origin were hydrolysed at a significantly slower rate than lipoproteins from normal rats by the lipoprotein lipase component of PHP. However, if rats were fasted for 16 h prior to lipoprotein recovery, no differences in rates of VLDL hydrolysis were observed. Slower hydrolysis of lipoproteins of diabetic origin reflected a decrease in the apolipoprotein CII/CIII ratio and other changes in the apolipoprotein profile. To assess whether diabetic rats were less able to clear triacylglycerol independent of changes in the nature of the lipoproteins, we monitored the clearance of chylomicron-like lipid emulsions in hepatectomized rats. In vivo, emulsion triacylglycerol hydrolysis was not slowed due to diabetes. However, control and diabetic rats, which had been fasted for 16 h, cleared triacylglycerol at about twice the rate of fed rats. Triacylglycerol secretion rates in diabetic and control rats were similar, whether fed or fasted. We conclude that in streptozocin diabetic rats, hypertriglyceridemia was not due to overproduction of chylomicron- or VLDL-triacylglycerol, nor to decreased endothelial lipase activities. Rather, in fed diabetic rats, the triacylglycerol-rich lipoproteins are poorer substrates for lipoprotein lipase. This may lead to slower formation of remnants which would exacerbate slow remnant removal. VLDL of diabetic origin were hydrolysed as efficiently as VLDL from control donors, suggesting that in the fed state the lipolytic defect may be specific for chylomicrons.  相似文献   

20.
Lipid emulsion particles were prepared by sonicating four different lipid mixtures (triacylglycerol (TAG), 70%; phospholipid, 25%; cholesteryl oleate (CO), 3%; and free cholesterol, 2%), then purified by density gradient ultracentrifugation. For three test mixtures, the TAG contained 50, 75, or 100% 1,3-dioleyl-2-stearylglycerol (OSO) with the remainder being triolein (OOO); 100% triolein in the lipid mixture was used as the control. After intravenous injection of the lipid particles into unanesthetized rats, removal of radioactive TAG fatty acid and CO from plasma was measured for 30 min, then liver and spleen uptakes were measured. When emulsions contained 75% or 100% OSO as TAG, the plasma removal rates of CO were, respectively, 60% or 30% of the rate when the TAG was 100% triolein; smaller recoveries of CO were found in the liver. The clearances of TAG fatty acid did not differ significantly and the recoveries of TAG fatty acid in the organs were not affected by the type of emulsion injected. Remnant particles were derived from donor rats in which uptake was blocked by exclusion of liver and other viscera from the circulation before injection of 100% OOO and 100% OSO emulsions. When injected into recipient intact rats, the removal of remnants from plasma was slower for remnants derived 15 min after injection of 100% OSO emulsions than from 100% OOO emulsions, showing that the slower removal of emulsion CO was due to slower remnant uptake from the plasma with OSO emulsions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号