首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

3.
DNA sliding clamps attach to polymerases and slide along DNA to allow rapid, processive replication of DNA. These clamps contain many positively charged residues that could curtail the sliding due to attractive interactions with the negatively charged DNA. By single-molecule spectroscopy we have observed a fluorescently labeled sliding clamp (polymerase III beta subunit or beta clamp) loaded onto freely diffusing, single-stranded M13 circular DNA annealed with fluorescently labeled DNA oligomers of up to 90 bases. We find that the diffusion constant for the beta clamp diffusing along DNA is on the order of 10(-14) m(2)/s, at least 3 orders of magnitude less than that for diffusion through water alone. We also find evidence that the beta clamp remains at the 3' end in the presence of Escherichia coli single-stranded-binding protein. These results may imply that the clamp not only acts to hold the polymerase on the DNA but also prevents excessive drifting along the DNA.  相似文献   

4.
The internal workings of a DNA polymerase clamp-loading machine.   总被引:14,自引:2,他引:12       下载免费PDF全文
Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicase, DNA polymerase III holoenzyme. The gamma complex uses ATP to open the beta clamp and assemble it onto DNA. Surprisingly, ATP is not needed for gamma complex to crack open the beta clamp. The function of ATP is to regulate the activity of one subunit, delta, which opens the clamp simply by binding to it. The delta' subunit acts as a modulator of the interaction between delta and beta. On binding ATP, the gamma complex is activated such that the delta' subunit permits delta to bind beta and crack open the ring at one interface. The clamp loader-open clamp protein complex is now ready for an encounter with primed DNA to complete assembly of the clamp around DNA. Interaction with DNA stimulates ATP hydrolysis which ejects the gamma complex from DNA, leaving the ring to close around the duplex.  相似文献   

5.
Linda B. Bloom 《DNA Repair》2009,8(5):570-578
Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.  相似文献   

6.
X P Kong  R Onrust  M O'Donnell  J Kuriyan 《Cell》1992,69(3):425-437
The crystal structure of the beta subunit (processivity factor) of DNA polymerase III holoenzyme has been determined at 2.5 A resolution. A dimer of the beta subunit (M(r) = 2 x 40.6 kd, 2 x 366 amino acid residues) forms a ring-shaped structure lined by 12 alpha helices that can encircle duplex DNA. The structure is highly symmetrical, with each monomer containing three domains of identical topology. The charge distribution and orientation of the helices indicate that the molecule functions by forming a tight clamp that can slide on DNA, as shown biochemically. A potential structural relationship is suggested between the beta subunit and proliferating cell nuclear antigen (PCNA, the eukaryotic polymerase delta [and epsilon] processivity factor), and the gene 45 protein of the bacteriophage T4 DNA polymerase.  相似文献   

7.
Homologous pairing in vitro initiated by DNA synthesis   总被引:2,自引:0,他引:2  
A number of models have been proposed for the initiation of general genetic recombination. One of these, originally proposed by Meselson and Radding, imagines that the single-stranded 5' tail that results from strand displacement DNA repair synthesis can initiate homologous recombination by invading a homologous duplex. The resultant D-loop intermediate is then processed into mature products. We demonstrate here that an in vitro system composed of the bacteriophage T4 uvsX protein (a RecA-like "strand transferase") and part of the T4 DNA polymerase holoenzyme efficiently mediates pairing between nicked double-stranded circular and linear duplex DNAs, thereby demonstrating the feasibility of a key step in the Meselson-Radding model.  相似文献   

8.
F factor TraI is a helicase and a single-stranded DNA nuclease ("relaxase") essential for conjugative DNA transfer. A TraI domain containing relaxase activity, TraI36, was generated previously. Substituting Ala for Arg150 (R150A) of TraI36 reduces in vitro relaxase activity. The mutant has reduced affinity, relative to wild type, for a 3'-TAMRA-labeled 22-base single-stranded oligonucleotide. While both R150A and wild-type TraI36 bind oligonucleotide, only wild type increases steady-state fluorescence anisotropy of the labeled 22-base oligonucleotide upon binding. In contrast, binding by either protein increases steady-state anisotropy of a 3'-TAMRA-labeled 17-base oligonucleotide. Time-resolved intensity data for both oligonucleotides, bound and unbound, require three lifetimes for adequate fits, at least one more than the fluorophore alone. The preexponential amplitude for the longest lifetime increases upon binding. Time-resolved anisotropy data for both oligonucleotides, bound and unbound, require two rotational correlation times for adequate fits. The longer correlation time increases upon protein binding. Correlation times for the protein-bound 17-base oligonucleotide are similar for both proteins, with the longer correlation time in the range of molecular tumbling of the protein-DNA complex. In contrast, protein binding causes less dramatic increases in correlation times for the 22-base oligonucleotide relative to the 17-base oligonucleotide. Binding studies indicate that R150 contributes to recognition of bases immediately 3' to the DNA cleavage site, consistent with the apparent proximity of R150 and the 3' oligonucleotide end. Models in which the R150A substitution alters single-stranded DNA flexibility at the oligonucleotide 3' end or affects fluorophore-DNA or fluorophore-protein interactions are discussed.  相似文献   

9.
DNA polymerase III holoenzyme (holoenzyme) is the 10-subunit replicase of the Escherichia coli chromosome. In this report, pure preparations of delta, delta', and a gamma chi psi complex are resolved from the five protein gamma complex subassembly. Using these subunits and other holoenzyme subunits isolated from overproducing plasmid strains of E. coli, the rapid and highly processive holoenzyme has been reconstituted from only five pure single subunits: alpha, epsilon, gamma, delta, and beta. The preceding report showed that of the three subunits in the core polymerase, only a complex of alpha (DNA polymerase) and epsilon (3'-5' exonuclease) are required to assemble a processive holoenzyme on a template containing a preinitiation complex (Studwell, P.S., and O'Donnell, M. (1990) J. Biol. Chem. 265, 1171-1178). This report shows that of the five proteins in the gamma complex only a heterodimer of gamma and delta is required with the beta subunit to form the ATP-activated preinitiation complex with a primed template. Surprisingly, the delta' subunit does not form an active complex with gamma but forms a fully active heterodimer complex with the tau subunit (as does delta). Hence, the tau delta' and gamma delta heterodimers are fully active in the preinitiation complex reaction with beta and primed DNA. Holoenzymes reconstituted using the alpha epsilon complex, beta subunit, and either gamma delta or tau delta' are fully processive in DNA synthesis, and upon completing the template they rapidly cycle to a new primed template endowed with a preinitiation complex clamp. Since the holoenzyme molecule contains all of these accessory subunits (gamma, delta, tau, delta', and beta) in all likelihood it has the capacity to form two preinitiation complex clamps simultaneously at two primer termini. Two primer binding components within one holoenzyme may mediate its rapid cycling to multiple primers on the lagging strand and also provides functional evidence for the hypothesis of holoenzyme as a dimeric polymerase capable of simultaneous replication of both leading and lagging strands of a replication fork.  相似文献   

10.
Myxobacteria have been shown to contain a large number of branched RNA-linked single-stranded DNA (multicopy single-stranded DNA (msDNA] molecules. In addition, we found that Myxococcus xanthus contains another smaller msDNA-like molecule, designated mrDNA, consisting of a 65-base single-stranded DNA covalently linked by a 2',5'-phosphodiester linkage to a 49-base branched RNA. In spite of their different primary sequences, the RNA-linked mrDNA is remarkably similar in secondary structure to msDNA, sharing similar stem-loop folding as well as the unique 2',5'-phosphodiester linkage. These results indicate that these novel molecules are synthesized by common molecular mechanisms.  相似文献   

11.
Replisomes are dynamic multiprotein machines capable of simultaneously replicating both strands of the DNA duplex. This review focuses on the structure and function of the E. coli replisome, many features of which generalize to other bacteria and eukaryotic cells. For example, the bacterial replisome utilizes clamps and clamp loaders to coordinate the actions required of the trombone model of lagging strand synthesis made famous by Bruce Alberts. All cells contain clamps and clamp loaders and this review summarizes their structure and function. Clamp loaders are pentameric spirals that bind DNA in a structure specific fashion and thread it through the ring shaped clamp. The recent structure of the E. coli beta clamp in complex with primed DNA has implications for how multiple polymerases function on sliding clamps and how the primed DNA template is exchanged between them. Recent studies reveal a remarkable fluidity in replisome function that enables it to bypass template lesions on either DNA strand. During these processes the polymerases within the replisome functionally uncouple from one another. Mechanistic processes that underlie these actions may involve DNA looping, similar to the trombone loops that mediate the lagging strand Okazaki fragment synthesis cycle.  相似文献   

12.
The FinO protein regulates the transfer potential of F-like conjugative plasmids through its interaction with FinP antisense RNA and its target, traJ mRNA. FinO binds to and protects FinP from degradation and promotes duplex formation between FinP and traJ mRNA in vitro. The FinP secondary structure consists of two stem-loop domains separated by a 4-base spacer and terminated by a 6-base tail. Previous studies suggested FinO bound to the smooth 14-base pair helix of stem-loop II. In this investigation, RNA mobility shift analysis was used to study the interaction between a glutathione S-transferase (GST)-FinO fusion protein and a series of synthetic FinP and traJ mRNA variants. Mutations in 16 of the 28 bases in stem II of FinP that are predicted to disrupt base pairing did not significantly alter the GST-FinO binding affinity. Removal of the single-stranded regions on either side of stem-loop II led to a dramatic decrease in GST-FinO binding to FinP and to the complementary region of the traJ mRNA leader. While no evidence for sequence-specific contacts was found, the results suggest that FinO recognizes the overall shape of the RNA and is influenced by the length of the single-stranded regions flanking the stem-loop.  相似文献   

13.
The gene 4 protein of bacteriophage T7 is a multifunctional enzyme that catalyzes (i) the hydrolysis of nucleoside 5'-triphosphates, (ii) the synthesis of tetraribonucleotide primers at specific recognition sequences on a DNA template, and (iii) the unwinding of duplex DNA. All three activities depend on binding of gene 4 protein to single-stranded DNA followed by unidirectional 5' to 3' translocation of the protein (Tabor, S., and Richardson, C. C. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 205-209). Binding of gene 4 protein to single-stranded DNA, assayed by retention of DNA-protein complexes on nitrocellulose filters, is random with regard to DNA sequence. Although gene 4 protein does not bind to duplex DNAs, the presence of a 240-nucleotide-long single-stranded tail on a 7200-base pair duplex DNA molecule is sufficient for gene 4 protein to cause retention of the DNA on a filter. The binding reaction requires, in addition to MgCl2, the presence of a nucleoside 5'-triphosphate, but binding is not dependent on hydrolysis; nucleoside 5'-diphosphate will substitute for nucleoside 5'-triphosphate. Of the eight common nucleoside triphosphates, dTTP promotes optimal binding. The half-life of the gene 4 protein-DNA complex depends on both the secondary structure of the DNA and on whether or not the nucleoside 5'-triphosphate cofactor can be hydrolyzed. Using the nonhydrolyzable nucleoside 5'-triphosphate analog, beta,gamma-methylene dTTP, the half-life of the gene 4 protein-DNA complex is greater than 80 min. In the presence of the hydrolyzable nucleoside 5'-triphosphate, dTTP, the half-life of the gene 4 protein-DNA complex using circular M13 DNA is at least 4 times longer than that observed using linear M13 DNA.  相似文献   

14.
Characterization of a triple DNA polymerase replisome   总被引:1,自引:0,他引:1  
The replicase of all cells is thought to utilize two DNA polymerases for coordinated synthesis of leading and lagging strands. The DNA polymerases are held to DNA by circular sliding clamps. We demonstrate here that the E. coli DNA polymerase III holoenzyme assembles into a particle that contains three DNA polymerases. The three polymerases appear capable of simultaneous activity. Furthermore, the trimeric replicase is fully functional at a replication fork with helicase, primase, and sliding clamps; it produces slightly shorter Okazaki fragments than replisomes containing two DNA polymerases. We propose that two polymerases can function on the lagging strand and that the third DNA polymerase can act as a reserve enzyme to overcome certain types of obstacles to the replication fork.  相似文献   

15.
To achieve the high degree of processivity required for DNA replication, DNA polymerases associate with ring-shaped sliding clamps that encircle the template DNA and slide freely along it. The closed circular structure of sliding clamps necessitates an enzyme-catalyzed mechanism, which not only opens them for assembly and closes them around DNA, but specifically targets them to sites where DNA synthesis is initiated and orients them correctly for replication. Such a feat is performed by multisubunit complexes known as clamp loaders, which use ATP to open sliding clamp rings and place them around the 3′ end of primer–template (PT) junctions. Here we discuss the structure and composition of sliding clamps and clamp loaders from the three domains of life as well as T4 bacteriophage, and provide our current understanding of the clamp-loading process.During each round of DNA replication, thousands to billions of nucleotides must be faithfully copied in a short period of time. However, by themselves, replicative DNA polymerases are distributive, synthesizing only ten or so nucleotides of complementary DNA before dissociating. To achieve the high degree of processivity required for efficient DNA replication, replicative DNA polymerases associate with ring-shaped sliding clamps that encircle the template DNA and slide freely along it. Such an association effectively tethers the polymerase to DNA, substantially increasing the amount of continuous replication. The closed circular structure of sliding clamps necessitates an enzyme-catalyzed mechanism, which not only opens them for assembly and closes them around DNA, but specifically targets them to sites where DNA synthesis is initiated and orients them correctly for interaction with DNA polymerases. Such a feat is performed by multisubunit complexes known as clamp loaders, which use ATP to open sliding clamp rings and place them around the 3′ end of primer–template (PT) junctions. Here we discuss the structure and composition of sliding clamps and clamp loaders from the three domains of life as well as T4 bacteriophage, and provide our current understanding of the clamp-loading process.  相似文献   

16.
Topoisomerase IB catalyzes recombinogenic DNA strand transfer reactions in vitro and in vivo. Here we characterize a new pathway of topoisomerase-mediated DNA ligation in vitro (flap ligation) in which vaccinia virus topoisomerase bound to a blunt-end DNA joins the covalently held strand to a 5' resected end of a duplex DNA containing a 3' tail. The joining reaction occurs with high efficiency when the sequence of the 3' tail is complementary to that of the scissile strand immediately 5' of the cleavage site. A 6-nucleotide segment of complementarity suffices for efficient flap ligation. Invasion of the flap into the duplex apparently occurs while topoisomerase remains bound to DNA, thereby implying a conformational flexibility of the topoisomerase clamp around the DNA target site. The 3' flap acceptor DNA mimics a processed end in the double-strand-break-repair recombination pathway. Our findings suggest that topoisomerase-induced breaks may be rectified by flap ligation, with ensuing genomic deletions or translocations.  相似文献   

17.
The Escherichia coli chromosomal replicase, DNA polymerase III holoenzyme, is highly processive during DNA synthesis. Underlying high processivity is a ring-shaped protein, the beta clamp, that encircles DNA and slides along it, thereby tethering the enzyme to the template. The beta clamp is assembled onto DNA by the multiprotein gamma complex clamp loader that opens and closes the beta ring around DNA in an ATP-dependent manner. This study examines the DNA structure required for clamp loading action. We found that the gamma complex assembles beta onto supercoiled DNA (replicative form I), but only at very low ionic strength, where regions of unwound DNA may exist in the duplex. Consistent with this, the gamma complex does not assemble beta onto relaxed closed circular DNA even at low ionic strength. Hence, a 3'-end is not required for clamp loading, but a single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) junction can be utilized as a substrate, a result confirmed using synthetic oligonucleotides that form forked ssDNA/dsDNA junctions on M13 ssDNA. On a flush primed template, the gamma complex exhibits polarity; it acts specifically at the 3'-ssDNA/dsDNA junction to assemble beta onto the DNA. The gamma complex can assemble beta onto a primed site as short as 10 nucleotides, corresponding to the width of the beta ring. However, a protein block placed closer than 14 base pairs (bp) upstream from the primer 3' terminus prevents the clamp loading reaction, indicating that the gamma complex and its associated beta clamp interact with approximately 14-16 bp at a ssDNA/dsDNA junction during the clamp loading operation. A protein block positioned closer than 20-22 bp from the 3' terminus prevents use of the clamp by the polymerase in chain elongation, indicating that the polymerase has an even greater spatial requirement than the gamma complex on the duplex portion of the primed site for function with beta. Interestingly, DNA secondary structure elements placed near the 3' terminus impose similar steric limits on the gamma complex and polymerase action with beta. The possible biological significance of these structural constraints is discussed.  相似文献   

18.
The 10 distinctive polypeptides of DNA polymerase III holoenzyme, purified as individual subunits or complexes, could be reconstituted to generate a polymerase with the high catalytic rate of the isolated intact holoenzyme. Functions and interactions of the subunits can be inferred from partial assemblies of the pol III core (alpha, epsilon, and theta subunits) with auxiliary subunits. The core possesses the polymerase and proofreading activities; the auxiliary subunits provide the core with processivity, the capacity to replicate long stretches of DNA without dissociating from the template. In a sequence of reconstruction steps, the beta subunit binds the primed template in an ATP-dependent manner through the catalytic action of a complex made up of the gamma, delta, delta', chi, and psi polypeptides. With the beta subunit in place, a processive polymerase is produced upon addition of the core. When the tau subunit is lacking, binding of polymerase to the primed template is less efficient and stable. The tau-less reconstituted polymerase is more prone to dissociation upon encountering secondary structures in the template in its path, such as a hairpin region in the single strand or a duplex region formed by a strand annealed to the template. With the tau subunit present, the interaction of the core.beta complex (the basic unit of a processive polymerase) with the primed template is strengthened. The tau-containing reconstituted polymerase can replicate DNA continuously through secondary structures in the template. The two distinctive kinds of processivity demonstrated by the tau-less and tau-containing reconstituted polymerases fit nicely into a scheme in which, organized as an asymmetric dimeric holoenzyme, the tau half is responsible for continuous synthesis of one strand, and the less stable half for discontinuous synthesis of the other.  相似文献   

19.
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.  相似文献   

20.
To study in details the assembly of DNA polymerases delta and epsilon holoenzymes a circular double-stranded DNA template containing a gap of 45 nucleotides was constructed. Both replication factor C and proliferating cell nuclear antigen were absolutely required and sufficient for assembly of DNA polymerase delta holoenzyme complex on DNA. On such a circular DNA substrate replication protein A (or E. coli single-strand DNA binding protein) was neither required for assembly of DNA polymerase delta holoenzyme complex nor for the gap-filling reaction. A circular structure of the DNA substrate was found to be absolutely critical for the ability of auxiliary proteins to interact with DNA polymerases. The linearization of the circular DNA template resulted in three dramatic effects: (i) DNA synthesis by DNA polymerase delta holoenzyme was abolished, (ii) the inhibition effect of replication factor C and proliferating cell nuclear antigen on DNA polymerase alpha was relieved and (iii) DNA polymerase epsilon could not form any longer a holoenzyme with replication factor C and proliferating cell nuclear antigen. The comparison of the effect of replication factor C and proliferating cell nuclear antigen on DNA polymerases alpha, delta and epsilon indicated that the auxiliary proteins appear to form a mobile clamp, which can easily slide along double-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号