共查询到20条相似文献,搜索用时 0 毫秒
1.
Small regions called protein transduction domains (PTDs), identified in cellular and viral proteins, have been reported to efficiently cross biological membranes. Here we show that the structural Gag protein of the prototypic foamy virus (PFV) is apparently able to move from cell to cell and to transport the green fluorescent protein (GFP) from few transfected cells to the nuclei of the entire monolayer. Deletion studies showed that this property lies within the second glycine/arginine (GRII) box in the C-terminus of the protein. We also found that uptake and nuclear accumulation of Gag GRII expressed as GFP-fusion protein in recipient cells was observed only following methanol fixation, but never in living cells or when cells were fixed with glutaraldehyde or treated with trichloroacetic acid prior to methanol fixation. Absence of intercellular spreading in vivo was further confirmed using a sensitive luciferase activity assay based on transactivation of the PFV long terminal repeats. Thus, we conclude that intercellular spreading of PFV Gag represents an artificial diffusion event occurring during cell fixation, followed by nuclear retention mediated by the chromatin-binding sequence within the Gag GRII box. In light of these results, we advise caution before defining a peptide as PTD on the basis of intercellular spreading observed by fluorescence microscopy. 相似文献
2.
Iron is abundant in most soils, but ferric compounds are almost insoluble. Therefore, plant roots use as tools acidification and enzymatic reduction of iron at the outer cell surface (strategy I) or solubilization by phytosiderophores, which are specific ferric chelators (strategy II). In the first case, iron is taken up as Fe2+ into the root symplast, and in the latter one, iron is taken up as Fe(III) complex. The path of iron from the root surface, up to the point of the xylem vessels within the central cylinder, may be completely symplasmic. However, a part of this route also may be an apoplasmic one, through the free space of the cell walls of rhizodermis and cortex (apoplast). In the endodermis, the Casparian band forms a strict barrier for apoplasmic transport; to move past this site, all ions must enter the symplast. During symplasmic transport, the intracellular environment is protected against the reactive species of iron by handling of iron in chelated forms. A promising candidate for this purpose is the plant-endogenous chelator nicotianamine. At the apoplasmic site, iron can be oxidized followed by precipitation as hydroxide or phosphate compounds. Thus, a pool of apoplastic iron can be formed, as shown by reductive mobilization or by proton-induced X-ray emission. This pool may be remobilized when iron deficiency takes place. During radial transport to the vessels, vacuoles may compete with the transport stream forming an iron store. When there is an iron excess, as in plants growing in waterlogged soils or by experimental techniques, plants can escape the deleterious effects of free iron by depositing it in phytoferritin, a storage protein inducible under iron excess. Also, nicotianamine forms a pool of metabolically available iron. Thus, in roots cells of the nicotianamine-free tomato mutant chloronerva iron precipitations occur as evidenced by energy dispersive X-ray analysis and the electron microscopic energy loss technique of energy spectroscopic imaging. Future research concerning the plant root's iron metabolism are needed to clarify the function of nicotianamine in intra- and intercellular iron trafficking and to identify the so-called iron-sensor which mediates the regulation of iron acquisition reactions of rhizodermal cells in response to the iron nutritional status of the plant. 相似文献
3.
4.
5.
Asuka Itaya Genqing Liang Young-Min Woo Richard S. Nelson Biao Ding 《Protoplasma》2000,213(3-4):165-175
Summary Plasmodesmata mediate intercellular transport of proteins, nucleic acids, and small molecules in plants. We show that transiently produced green-fluorescent protein (GFP) trafficked intercellularly in the epidermis of sink leaves, but not of source leaves, in tobacco and cucumber. In contrast, the protein did not traffic in either sink or source leaves of tomato. On the other hand, the protein spread extensively from cell to cell in the epidermis of all leaves and stems ofArabidopsis thaliana as well as in young hypocotyls and cotyledons of tomato and cucumber. GFP could traffic from epidermis to ground tissues in hypocotyls but not in cotyledons of cucumber. GFP fused to a number of mutant forms of the cucumber mosaic virus 3a movement protein (CMV 3a MP) failed to traffic from cell to cell, suggesting that GFP does not have a specific motif for plasmodesmal trafficking. Our data, together with previous findings, indicate that plasmodesmata can mediate both specific and nonspecific intercellular trafficking of proteins. Furthermore, our data suggest that nonspecific protein trafficking is controlled by species-, development-, organ-, and tissue-specific factors. Since GFP can readily traffic from cell to cell, it raises the questions of how metabolites are compartmentalized intercellularly in a plant and of whether some endogenous plant proteins traffic nonspecifically from cell to cell to perform physiological functions yet to be elucidated.Abbreviations CMV
cucumber mosaic virus
- GFP
green-fluorescent protein
- MP
movement protein
- SEL
size exclusion limit 相似文献
6.
7.
The molecular biology of spuma or foamy retroviruses is different from that of the other members of the Retroviridae. Among the distinguishing features, the N-terminal domain of the foamy virus Env glycoprotein, the 16-kDa Env leader protein Elp, is a component of released, infectious virions and is required for particle budding. The transmembrane protein Elp specifically interacts with N-terminal Gag sequences during morphogenesis. In this study, we investigate the mechanism of Elp release from the Env precursor protein. By a combination of genetic, biochemical, and biophysical methods, we show that the feline foamy virus (FFV) Elp is released by a cellular furin-like protease, most likely furin itself, generating an Elp protein consisting of 127 amino acid residues. The cleavage site fully conforms to the rules for an optimal furin site. Proteolytic processing at the furin cleavage site is required for full infectivity of FFV. However, utilization of other furin proteases and/or cleavage at a suboptimal signal peptidase cleavage site can partially rescue virus viability. In addition, we show that FFV Elp carries an N-linked oligosaccharide that is not conserved among the known foamy viruses. 相似文献
8.
9.
All foamy viruses give rise to a strong nuclear staining when infected cells are reacted with sera from infected hosts. This nuclear fluorescence distinguishes foamy viruses from all other retroviruses. The experiments reported here indicate that the foamy virus Gag precursor protein is transiently located in the nuclei of infected cells and this is the likely reason for the typical foamy virus nuclear fluorescence. By using the vaccinia virus expression system, a conserved basic sequence motif in the nucleocapsid domain of foamy virus Gag proteins was identified to be responsible for the nuclear transport of the gag precursor molecule. This motif was also found to be able to direct a heterologous protein, the Gag protein of human immunodeficiency virus, into the nucleus. 相似文献
10.
Tobaly-Tapiero J Bittoun P Lehmann-Che J Delelis O Giron ML de Thé H Saïb A 《Traffic (Copenhagen, Denmark)》2008,9(10):1717-1727
Retroviruses hijack cellular machineries to productively infect their hosts. During the early stages of viral replication, proviral integration relies on specific interactions between components of the preintegration complex and host chromatin-bound proteins. Here, analyzing the fate of incoming primate foamy virus, we identify a short domain within the C-terminus of the structural Gag protein that efficiently binds host chromosomes, by interacting with H2A/H2B core histones. While viral particle production, virus entry and intracellular trafficking are not affected by mutation of this domain, chromosomal attachment of incoming subviral complexes is abolished, precluding proviral integration. We thus highlight a new function of the structural foamy Gag protein as the main tether between incoming subviral complexes and host chromatin prior to integration. 相似文献
11.
Analysis of the role of the bel and bet open reading frames of human foamy virus by using a new quantitative assay. 总被引:11,自引:9,他引:2 下载免费PDF全文
We have constructed a BHK-21-derived indicator cell line containing a single integrated copy of the beta-galactosidase (beta-Gal) gene under control of the human foamy virus (HFV) long terminal repeat promoter (from -533 to +20). These foamy virus-activated beta-Gal expression (FAB) cells can be used in a quantitative assay to measure the infectious titer of HFV. Our results show that the FAB assay is 50 times more sensitive than determination of the virus titer by the end-point dilution method. Using the FAB assay, we have found that HFV can productively replicate in several erythroblastoid cell lines as well as in the Jurkat T-cell line. We have also examined the roles of bel2, bet, and bel3 in viral replication by constructing proviral HFV clones in which the reading frame of Bel2, Bet, or Bel3 is disrupted by placement of translation stop codons. Analysis of these mutants reveals that while the bel3 gene is not required for viral replication in vitro, mutations in the bel2 or bet gene decrease cell-free viral transmission approximately 10-fold. 相似文献
12.
Foamy viruses (FVs) have broad cellular tropism infecting vertebrates from fish to human being,which indicates that Env protein has a high capability for membrane fusion.Conservative features in all FV transmembrane (TM) proteins include a region of hydrophobic domain called membrane-spanning domain (MSD),which contains several stretches of hydrophobic amino acids.To investigate whether these features were associated with the cytotoxicity effect of TM on Escherichia coli,a series of mutants were constructed and expressed in the E.coli BL21 (DE3) using pET-32a (+) as expressing vector.The results showed that only TM3 without MSD was expressed in E.coli,whereas the other two containing full or part of the MSD (TM1 and TM2) could not be expressed.Furthermore,the bacterial amount and living bacteria analysis revealed that the cytotoxicity of TM was dependent on its MSD,especially on the stretches of hydrophobic amino acids.Western blotting analysis showed that TM3 protein was purified with affinity purification. 相似文献
13.
The Borf1 protein is encoded by an immediate-early gene of the bovine foamy virus (BFV) and plays a key role in the viral life cycle. Borf1 is a DNA binding protein which can transactivate both the long terminal repeat (LTR) and the internal promoter (IP) of BFV by specifically binding to the transactivation responsive element (TRE). To analyze the subcellular localization of Borf1 during the BFV life cycle, this gene was cloned into a prokaryotic expression vector and expressed in a soluble form. After the purification and immunization, we raised the mouse anti-Borf1 serum with a high titer based on ELISA results. Western blot analysis showed that the antiserum could specifically recognize the Borf1 protein that was expressed in 293T cells. With this specific serum, we revealed the nuclear and cytoplasmic localization of Borf1 in HeLa cells that was transfected with Borf1. Moreover, the immuno-fluorescence assay also showed that the localization of Borf1 during the infection and transfection of BFV was identical. 相似文献
14.
Ma Yonggang Yu Hong Wang Jinzhong Chen Qimin Geng Yunqi 《Frontiers of Biology in China》2006,1(4):353-356
Foamy viruses (FVs) have broad cellular tropism infecting vertebrates from fish to human being, which indicates that Env protein
has a high capability for membrane fusion. Conservative features in all FV transmembrane (TM) proteins include a region of
hydrophobic domain called membrane-spanning domain (MSD), which contains several stretches of hydrophobic amino acids. To
investigate whether these features were associated with the cytotoxicity effect of TM on Escherichia coli, a series of mutants were constructed and expressed in the E. coli BL21 (DE3) using pET-32a (+) as expressing vector. The results showed that only TM3 without MSD was expressed in E. coli, whereas the other two containing full or part of the MSD (TM1 and TM2) could not be expressed. Furthermore, the bacterial
amount and living bacteria analysis revealed that the cytotoxicity of TM was dependent on its MSD, especially on the stretches
of hydrophobic amino acids. Western blotting analysis showed that TM3 protein was purified with affinity purification.
__________
Translated from Acta Scientiarum Naturalium Universitatis Nankaiensis, 2005, 38(2): 49–53 [译自: 南开大学学报 (自然科学版), 2005, 38(2): 49–53] 相似文献
15.
16.
17.
18.
T Koshizuka H Takakuwa F Goshima T Murata Y Nishiyama 《Biochemical and biophysical research communications》2001,288(3):597-602
The US11 gene product of herpes simplex virus is an abundant virion structural protein with RNA-binding regulatory activity. Its carboxyl-terminal half consists of tandem tripeptide repeats of the sequence RXP. We demonstrate that the US11 protein has intercellular trafficking activity and accumulates in the nucleolus when singly expressed in cultured cells, and that the RXP repeats are responsible for this activity. These same properties were also observed in cells expressing a fusion protein linking US11 to the green fluorescent protein. Furthermore, exogenous US11 protein was internalized by cells at 4 degrees C, which suggests that US11 protein uptake occurs primarily through an energy-independent pathway. 相似文献
19.
Shikova-Lekova E Lindemann D Pietschmann T Juretzek T Rudolph W Herchenröder O Gelderblom HR Rethwilm A 《Journal of virology》2003,77(13):7677-7681
Replication-competent chimeric retroviruses constructed of members of the two subfamilies of Retroviridae, orthoretroviruses and spumaretroviruses, specifically murine leukemia viruses (MuLV) bearing hybrid MuLV-foamy virus (FV) envelope (env) genes, were characterized. All viruses had the cytoplasmic tail of the MuLV transmembrane protein. In ESL-1, a truncated MuLV leader peptide (LP) was fused to the complete extracellular portion of FV Env, and ESL-2 to -4 contained the complete MuLV-LP followed by N-terminally truncated FV Env decreasing in size. ESL-1 to -4 had an extended host cell range compared to MuLV, induced a cytopathology reminiscent of FVs, and exhibited an ultrastructure that combined the features of the condensed core of MuLV with the prominent surface knobs of FVs. Replication of ESL-2 to -4 resulted in the acquisition of a stop codon at the N terminus of the chimeric Env proteins. This mutation rendered the MuLV-LP nonfunctional and indicated that the truncated FV-LP was sufficient to direct Env synthesis into the secretory pathway. Compared to the parental viruses, the chimeras replicated with only moderate cell-free titers. 相似文献
20.
Spumaviruses, commonly called foamy viruses, are complex retroviruses that establish life-long persistent infections in the absence of accompanying pathology. Depending upon cell type, infection of cells in tissue culture cells can result in either lytic replication, persistence, or latency. The cellular factors that mediate foamy virus (FV) latency are poorly understood. In this study we show that the only known inhibitor of FV replication, the promyelocytic leukemia protein (PML), which binds the FV transactivator (Tas), does not play an important role in FV latency in vitro. We found no significant differences in PML levels in cells that supported lytic replication compared to those that were latently infected. Furthermore, endogenous PML levels did not change following exposure to phorbol myristate acetate (PMA), which induces FV replication. We demonstrated that FV replication proceeded in the presence of substantial levels of PML, both in fully permissive cells and during reactivation of latent FV. Endogenous PML did not efficiently colocalize with Tas, even after upregulation by alpha interferon (IFN-alpha) treatment. IFN-alpha did, however, partially suppress the reactivation of latent FV by PMA. Finally, depletion of endogenous PML by small interfering RNA did not promote activation of FV in cells that responded to PMA treatment. Taken together, these data indicate that endogenous PML does not play an important role in mediating FV latency. 相似文献