首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the Escherichia, Neisseria, Thermotoga, and Mycobacteria clustered regularly interspaced short palindromic repeat (CRISPR) subtypes have resulted in a model whereby CRISPRs function as a defense system against bacteriophage infection and conjugative plasmid transfer. In contrast, we previously showed that the Yersinia-subtype CRISPR region of Pseudomonas aeruginosa strain UCBPP-PA14 plays no detectable role in viral immunity but instead is required for bacteriophage DMS3-dependent inhibition of biofilm formation by P. aeruginosa. The goal of this study is to define the components of the Yersinia-subtype CRISPR region required to mediate this bacteriophage-host interaction. We show that the Yersinia-subtype-specific CRISPR-associated (Cas) proteins Csy4 and Csy2 are essential for small CRISPR RNA (crRNA) production in vivo, while the Csy1 and Csy3 proteins are not absolutely required for production of these small RNAs. Further, we present evidence that the core Cas protein Cas3 functions downstream of small crRNA production and that this protein requires functional HD (predicted phosphohydrolase) and DEXD/H (predicted helicase) domains to suppress biofilm formation in DMS3 lysogens. We also determined that only spacer 1, which is not identical to any region of the DMS3 genome, mediates the CRISPR-dependent loss of biofilm formation. Our evidence suggests that gene 42 of phage DMS3 (DMS3-42) is targeted by CRISPR2 spacer 1 and that this targeting tolerates multiple point mutations between the spacer and DMS3-42 target sequence. This work demonstrates how the interaction between P. aeruginosa strain UCBPP-PA14 and bacteriophage DMS3 can be used to further our understanding of the diverse roles of CRISPR system function in bacteria.  相似文献   

2.
3.
目的:从医院废水中快速分离多株不同的铜绿假单胞杆菌噬菌体,研究其生物学特性,为建立铜绿假单胞杆菌噬菌体库做准备。方法:利用噬菌斑法从未经处理的医院污水中分离和鉴定铜绿假单胞杆菌噬菌体,根据感染谱的不同确定它们为不同的铜绿假单胞杆菌噬菌体;重点研究其中一株宿主谱较广的噬菌体的生物学特性,采用负染法电镜观察噬菌体的形态和大小,提取该噬菌体的基因组并进行酶切电泳分析,测定噬菌体感染复数并观察其一步生长曲线。结果:通过噬菌斑法分离出90株铜绿假单胞杆菌噬菌体。电镜观察显示,噬菌体Pa27P1头部呈立体对称,有一长尾;酶切结果显示,噬菌体Pa27P1的基因组为双链DNA;生长曲线表明噬菌体Pa27P1感染宿主菌的潜伏期为25 min,爆发时间为25 min,裂解量为514。结论:90株铜绿假单胞杆菌噬菌体中有5株具有较广的噬菌谱,其组合能裂解所有18株铜绿假单胞杆菌,为深入研究铜绿假单胞杆菌噬菌体的生物学特性及其功能提供了依据。  相似文献   

4.

The rise of antibiotic resistant bacteria is posing a serious threat to human health. For example, resistant strains of Pseudomonas aeruginosa have resulted in untreatable and potentially lethal infections in both cystic fibrosis and immunocompromised patients. Due to the growing need for alternative treatment options, bacteriophage, or phage, therapy is gaining considerable attention. While previous studies have demonstrated the effectiveness of phage in combating persistent bacterial infections, there is currently a lack of knowledge regarding the host immunological response following phage exposure. In the present study, the bioresponses of an enhanced in vitro model were characterized following exposure to either DMS3 or PEV2, P. aeruginosa targeting phages. Results demonstrated a PEV2-dependent increase in IL-6 and TNF-α production, but no changes associated with DMS3 exposure. Additionally, following the establishment of an in vitro infection model, DMS3 was found to successfully protect mammalian lung cells from P. aeruginosa. Taken together, the biocompatibility and antibacterial effectiveness distinguish DMS3 bacteriophage as a strong candidate for phage therapy. However, as DMS3 is pilin dependent and bacterial receptor expression varies significantly, this work highlights the necessity of generating phage cocktails.

  相似文献   

5.
Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy--the use of specific viruses that infect bacteria--is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose) administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose) resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections.  相似文献   

6.
The properties of the isolated Pseudomonas aeruginosa bacteriophage phiPMG1 include the lytic infection cycle, and the formation of a broad halo (semi-transparent zone) around the plaques. We consider phiPMG1 as a potential member of therapeutic cocktails of live phages, and as a source of peptidoglycan and lipopolysaccharide degrading enzymes. Partial sequencing of phiPMG1 genome has revealed high similarity with known temperate P. aeruginosa phage D3. An open reading frame encoding lytic transglycosilase was identified in the genome. This enzyme PMG MUR was obtained in recombinant form, and its activity and substrate specificity has been studied.  相似文献   

7.
8.
A new insertion element, IS222, was identified to be associated with the DNA of a mutant strain of the converting Pseudomonas aeruginosa bacteriophage D3. The insertion sequence was 1,350 base pairs in size and possessed terminal inverted repeats. The nucleotide sequence contained single cleavage sites for EcoRI and PvuI but none for BamHI, PstI, HindIII, SmaI, or SalI. By Southern hybridization analysis, no homology was found with genomic DNA from P. aeruginosa PAT or Escherichia coli. Genomic DNA from the phage host, P. aeruginosa PAO, contained two sequences homologous to IS222.  相似文献   

9.
Pseudomonas aeruginosa bacteriophage φKMV requires type IV pili for infection, as observed from the phenotypic characterization and phage adsorption assays on a phage infection-resistant host strain mutant. A cosmid clone library of the host ( P. aeruginosa PAO1) genomic DNA was generated and used to select for a clone that was able to restore φKMV infection in the resistant mutant. This complementing cosmid also re-established type IV pili-dependent twitching motility. The correlation between bacteriophage φKMV infectivity and type IV pili, along with its associated twitching motility, was confirmed by the resistance of a P. aeruginosa PAO1Δ pilA mutant to the phage. Subcloning of the complementing cosmid and further phage infection analysis and motility assays suggests that a common regulatory mechanism and/or interaction between the ponA and pilMNOPQ gene products are essential for bacteriophage φKMV infectivity.  相似文献   

10.
The genome of halo-forming temperate Pseudomonas aeruginosa phage phi297 and lytic activity of its virulent mutant were studied. A mosaic structure was revealed for phi297 genome by its complete sequencing. The phi97 genome was partly homologous to the genomes of phages D3 and F116. High lytic activity was assumed for temperate P. aeruginosa bacteriophage phi297 on the basis of morphological features of negative colonies. Virulent mutant phi297vir, which was capable oflysing bacteria, while the wild-type phage induced lysogeny, was isolated. Lytic activity was compared for phi297 and the phages from commercial mixtures of two manufacturers (facilities of Nizhnii Novgorod and Perm'). Phage phi297 caused lysis of the mutant PAO1 bacteria that were resistant to the phages from commercial preparations, but the lystic activity spectrum of phi297 was narrower that the spectra of the commercial phages. The use of nonreverting virulent mutants of certain temperate bacteriophages was proposed for the treatment of P. aeruginosa infections.  相似文献   

11.
Mutants of Pseudomonas aeruginosa with impaired ability to establish a lysogenic relationship with temperate bacteriophage (Les-) have been isolated. These les mutations map to two areas of the P. aeruginosa chromosomal map as determined by conjugational and transductional analyses. Two phenotypic classes of Les- mutants were identified. One class of mutations has pleiotropic effects on DNA metabolism. These mutants are unable to recombine genetic material acquired as a result of either conjugation or transduction (Rec-). In addition, the ability of these Les- Rec- mutants to repair UV-induced damage to bacteriophage is reduced (host-cell reactivation deficient, Hcr-). Mutants of the second class are Les-, Rec+, and Hcr+.  相似文献   

12.
Bacteriophage infection has profound effects on bacterial biology. Clustered regular interspaced short palindromic repeats (CRISPRs) and cas (CRISPR-associated) genes are found in most archaea and many bacteria and have been reported to play a role in resistance to bacteriophage infection. We observed that lysogenic infection of Pseudomonas aeruginosa PA14 with bacteriophage DMS3 inhibits biofilm formation and swarming motility, both important bacterial group behaviors. This inhibition requires the CRISPR region in the host. Mutation or deletion of five of the six cas genes and one of the two CRISPRs in this region restored biofilm formation and swarming to DMS3 lysogenized strains. Our observations suggest a role for CRISPR regions in modifying the effects of lysogeny on P. aeruginosa.  相似文献   

13.
Reactivation of UV-C-inactivated Pseudomonas aeruginosa bacteriophages D3C3, F116, G101, and UNL-1 was quantified in host cells infected during the exponential phase, during the stationary phase, and after starvation (1 day, 1 and 5 weeks) under conditions designed to detect dark repair and photoreactivation. Our experiments revealed that while the photoreactivation capacity of stationary-phase or starved cells remained about the same as that of exponential-phase cells, in some cases their capacity to support dark repair of UV-inactivated bacteriophages increased over 10-fold. This enhanced reactivation capacity was correlated with the ca. 30-fold-greater UV-C resistance of P. aeruginosa host cells that were in the stationary phase or exposed to starvation conditions prior to irradiation. The dark repair capacity of P. aeruginosa cells that were infected while they were starved for prolonged periods depended on the bacteriophage examined. For bacteriophage D3C3 this dark repair capacity declined with prolonged starvation, while for bacteriophage G101 the dark repair capacity continued to increase when cells were starved for 24 h or 1 week prior to infection. For G101, the reactivation potentials were 16-, 18-, 10-, and 3-fold at starvation intervals of 1 day, 1 week, 5 weeks, and 1. 5 years, respectively. Exclusive use of exponential-phase cells to quantify bacteriophage reactivation should detect only a fraction of the true phage reactivation potential.  相似文献   

14.
We report the complete genome sequence of two Pseudomonas aeruginosa phages MP29 and MP42. Their genomes are similar to those of P. aeruginosa temperate phages DMS3 and MP22, whose lysogens are impaired in swarming motilities, involving the host CRISPR loci. Both MP29 and MP42 lysogens, however, were proficient in swarming, suggesting the absence of the phage-host CRISPR interaction.  相似文献   

15.
The T7-like phiKMV bacteriophage active on Pseudomonas aeruginosa was previously isolated by us and shown to have DNA resistant to many endonucleases. A loss of sensitive sites might be a consequence of a long phiKMV evolution on different hosts. To elucidate, whether this trait is shared by other similar phages, several new phiKMV-like phages were isolated from different sources and compared. All studied phiKMV-like phages formed three groups, insignificantly differing in the number and localization of endonuclease-sensitive DNA sites. This confirms that the present-day phages of this species have highly conserved genomes. Mutational "restoration" of the lost sites may be restricted by a lethal effect. The phiKMV-like phages were shown for the first time to increase the rate of in vitro accumulation of giant phiKZ-like phages of P. aeruginosa. This effect is characteristic only of phiKMV-like phages.  相似文献   

16.
Cell death in Pseudomonas aeruginosa biofilm development   总被引:12,自引:0,他引:12       下载免费PDF全文
Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids. However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development thereafter, a bacteriophage capable of superinfecting and lysing the P. aeruginosa parent strain was detected in the fluid effluent from the biofilm. The bacteriophage implicated in biofilm killing was closely related to the filamentous phage Pf1 and existed as a prophage within the genome of P. aeruginosa. We propose that prophage-mediated cell death is an important mechanism of differentiation inside microcolonies that facilitates dispersal of a subpopulation of surviving cells.  相似文献   

17.
The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.  相似文献   

18.
Isolation of nonsense suppressor mutants in Pseudomonas.   总被引:31,自引:13,他引:18       下载免费PDF全文
A strain of Escherichia coli harboring the drug resistance plasmid RP1 was treated with the mutagen N-methyl-N-nitro-N-nitro-N-nitrosoguanidine, and mutants were isolated in which ampicillin resistance had been lost due to an amber mutation in the plasmid. One of these mutants was again treated, and a strain was isolated in which tetracycline resistance was also lost due to an amber mutation in the plasmid. The plasmid containing amber mutations in the genes amp and tet was named pLM2. This plasmid could be transferred to strains of Pseudomonas aeruginosa, P. phaseolicola, and P. pseudoalcaligenes. Mutants resistant to ampicillin and tetracycline could not be obtained from P. phaseolicola carrying pLM2. However, strains of E. coli, P. aeruginosa, and P. pseudoalcaligenes carrying the plasmid did produce mutants simultaneously resistant to both antibiotics. All of the mutants of E. coli had developed nonsense suppressors since they became phenotypically lac+, although harboring a lac amber mutation, and formed plaques with amber mutants of phages PRR1 and PRD1 that attack organisms carrying RP1. Approximately 20% of the resistant mutants of P. aeruginosa and P. pseudoalcaligenes were sensitive to the amber mutant of PRD1. These mutants were of variable stability and grew somewhat more slowly than their parent strains. One of the suppressor mutants of P. pseudoalcaligenes, designated ERA(pLM2)S4, was used for the isolation of nonsense mutants of bacteriophage PHA6, a virus having a segmented genome of double-stranded ribonucleic acid and an envelope of lipids and proteins.  相似文献   

19.
A current question in biofilm research is whether biofilm-specific genetic processes can lead to differentiation in physiology and function among biofilm cells. In Pseudomonas aeruginosa, phenotypic variants which exhibit a small-colony phenotype on agar media and a markedly accelerated pattern of biofilm development compared to that of the parental strain are often isolated from biofilms. We grew P. aeruginosa biofilms in glass flow cell reactors and observed that the emergence of small-colony variants (SCVs) in the effluent runoff from the biofilms correlated with the emergence of plaque-forming Pf1-like filamentous phage (designated Pf4) from the biofilm. Because several recent studies have shown that bacteriophage genes are among the most highly upregulated groups of genes during biofilm development, we investigated whether Pf4 plays a role in SCV formation during P. aeruginosa biofilm development. We carried out immunoelectron microscopy using anti-Pf4 antibodies and observed that SCV cells, but not parental-type cells, exhibited high densities of Pf4 filaments on the cell surface and that these filaments were often tightly interwoven into complex latticeworks surrounding the cells. Moreover, infection of P. aeruginosa planktonic cultures with Pf4 caused the emergence of SCVs within the culture. These SCVs exhibited enhanced attachment, accelerated biofilm development, and large regions of dead and lysed cells inside microcolonies in a manner identical to that of SCVs obtained from biofilms. We concluded that Pf4 can mediate phenotypic variation in P. aeruginosa biofilms. We also performed partial sequencing and analysis of the Pf4 replicative form and identified a number of open reading frames not previously recognized in the genome of P. aeruginosa, including a putative postsegregational killing operon.  相似文献   

20.
Mutants with defective lipopolysaccharides (LPSs) were isolated from Pseudomonas aeruginosa PACIR (Habs serogroup 3) by selection for resistance to aeruginocin from P. aeruginosa PI6 Carbenicillin-sensitive mutants were isolated from P. aeruginosa PACI but not all had defective LPSs. Rough colonial morphology and resistance to bacteriophage II9X appeared to be independent of LPS composition. The LPSs from five mutants were analysed and compared with that of the parent strain. Separation of partially-degraded polysaccharides from LPS from PACI on Sephadex G75 yielded two different high molecular weight fractions and a phosphorylated low molecular weight fraction (L). The mutant LPSs lacked most or all of the high molecular weight fractions but retained some low molecular weight material. That from PACI and two of the mutants was separated by elution from Biogel P6 into two fractions. One, L2, was the core polysaccharide while the other, LI, contained short antigenic side-chains attached to the core like the semi-rough (SR) LPSs of the Enterobacteriaceae. The two mutants which gave the LI fraction with Habs 3 and PACI antisera as did the parent strain. The other three mutants were unreactive and their LPSs contained core components only. One appeared to have a complete core while the other two lacked rhamnose and rhammose plus glucose respectively. Thus there may be four types of LPS in PACI: one contains unsubstituted core polysaccharide and yields L2 on acid hydrolysis, another has short antigenic side-chains of the SR type and yields the LI fraction, while the two high molecular weight fractions are derived from core polysaccharides with different side-chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号