首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The purpose of this work was to study H2/CO2-utilizing acetogenic population in the colons of non-methane-producing individuals harboring low numbers of methanogenic archaea. Among the 50 H2-consuming acetogenic strains isolated from four fecal samples and an in vitro semi-continuous culture enrichment, with H2/CO2 as sole energy source, 20 were chosen for further studies. All isolates were Gram-positive strict anaerobes. Different morphological types were identified, providing evidence of generic diversity. All acetogenic strains characterized used H2/CO2 to form acetate as the sole metabolite, following the stoichiometric equation of reductive acetogenesis. These bacteria were also able to use a variety of organic compounds for growth. The major end product of glucose fermentation was acetate, except for strains of cocci that mainly produced lactate. Yeast extract was not necessary, but was stimulatory for growth and acetogenesis from H2/CO2. Received: 28 December 1995 / Accepted: 30 January 1996  相似文献   

2.
朱慧  符波  鲁帅领  刘宏波  刘和 《微生物学通报》2018,45(11):2320-2330
【背景】同型产乙酸菌是一类利用乙酰辅酶A途径固定CO_2合成自身细胞物质并生成乙酸、乙醇等代谢产物的厌氧菌群,其分布广泛、种类繁多且代谢多样。深入研究同型产乙酸菌菌株的代谢能力及特性,对探索该种群的生理生化特性及其环境作用至关重要。【目的】研究一株同型产乙酸菌Clostridium sp. BXX的最适培养条件及其自养与异养生长特性。【方法】设置BXX菌株培养温度10-55°C、初始pH 6.0-9.0、NaCl浓度0-2.0%、不同氮源,测定菌体细胞含量和产物生成浓度,确定菌株最适培养条件。研究BXX菌株分别以H_2/CO_2、合成气、CO、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚、甘油、丙酮酸和乳酸为底物时的底物消耗、产物生成、菌体细胞含量和pH等,探究其自养和异养生长特性。【结果】BXX菌株的最适培养温度为30°C,初始pH为7.0,NaCl浓度为1.0%,氮源为酵母粉。BXX菌株能以H2/CO2、合成气、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚和甘油为底物生长,不能以CO、丙酮酸或乳酸为底物生长。【结论】BXX菌株既能自养生长产乙酸,又能异养生长产乙醇。BXX菌株是乙酸发酵的优良菌种资源,有较好的工业应用潜力。  相似文献   

3.
The present work reports on autotrophic metabolism in four H2/CO2-utilizing acetogenic bacteria isolated from the human colon (two Clostridium species, one Streptococcus species, and Ruminococcus hydrogenotrophicus). H2/CO2-utilization by these human acetogenic strains occurred during both exponential and stationary phases of growth. Acetate was the major metabolite produced by all isolates following the stoichiometric equation of reductive acetogenesis. Furthermore, the ability of these acetogenic bacteria to incorporate 13CO2 into acetate in the presence of H2 in the gas phase demonstrated the utilization of the reductive pathway of acetate formation from a one-carbon compound. Energy conservation during the autotrophic metabolism in colonic acetogens might involve sodium- or proton-chemiosmotic mechanisms. A sodium-dependent ATP generation was only demonstrated in one Clostridium species, whereas sodium could be replaced by potassium in other strains. The minimal thresholds of hydrogen uptake were determined and varied from 1100 to 3680 ppm depending on the acetogenic strain. These values appeared higher than those measured for the colonic methanogen,Methanobrevibacter smithii.  相似文献   

4.
Hu Y  Holden JF 《Journal of bacteriology》2006,188(12):4350-4355
The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.  相似文献   

5.
Autotrophic growth yields of four strains of Sulfolobus using tetrathionate as sole energy substrate fell in the range 6.2–7.8 g dry weight (mol tetrathionate oxidized)-1. Autotrophic organisms lacked ribulose 1,5-bis-phosphate carboxylase, but contained pyruvate and phosphoenolpyruvate carboxylases. S. brierleyi and strains B6-2 and LM exhibited mixotrophic growth, with tetrathionate oxidation, CO2-fixation and organic substrate assimilation occurring concurrently, using media containing glucose or acetate. Yeast extract or succinate supported heterotrophic growth and showed strain-dependent repression of one or both of tetrathionate oxidation and CO2-fixation resulting in biphasic growth. All four carbon atoms of succinate were assimilated to cell-carbon during growth. Acetate was the major source of cell-carbon during mixotrophic growth. These observations are not inconsistent with the possibility of a reductive carboxylic acid cycle in these organisms. Radiorespirometric analysis of glucose oxidation indicated CO2 release to occur by means of an Entner-Doudoroff pathway (followed by pyruvate decarboxylation) and oxidative pentose phosphate pathway reactions. There was little evidence from the glucose radiorespirometry of the large-scale use of an oxidative tricarboxylic acid cycle for terminal oxidation of acetate derived from pyruvate. These results demonstrate the considerable metabolic versatility of Sulfolobus strains and show that there is significant variation among them.Abbreviations PIPES Piperazine-N,N-bis (2-ethane sulphonic acid)  相似文献   

6.
The effect of various organic compounds on the growth of ammonia-oxidizing bacteria was examined.Nitrosococcus oceanus, a strongly halophilic bacterium, had a very low tolerance to organic matter compared with other organisms tested. Organic compounds scarcely affected the growth of theNitrosomonas strains whereas nitrite formation by bothNitrosococcus mobilis strains was inhibited by nearly all of the substances tested. The growth ofNitrosospira strain Nsp1 was enhanced more than 30% by acetate and formate, but not growth was detectable in the presence of pyruvate. On the contrary,Nitrosospira strain Nsp5 was stimulated only by pyruvate. Nitrite formation by the twoNitrosovibrio tenuis strains tested was similar. The growth of both strains was enhanced considerably by formate and glucose; acetate and, to a greater extent, pyruvate inhibited these bacteria.In batch culture, the energy efficiency of autotrophically grown ammonia-oxidizing bacteria varied from strain to strain. The cell yield of mixotrophically grown cultures, per unit of ammonia oxidized, was increased in comparison with autotrophic ones. No heterotrophic growth was detected.  相似文献   

7.
Heterotrophic growth of the microalga Chlorella vulgaris Beij. in synthetic as well as sterilized municipal wastewater of a nonindustrialized city was measured. The city wastewater contained high levels of ammonium and nitrate, medium levels of phosphate, and low levels of nitrite and organic molecules and could not support heterotrophic growth of C. vulgaris. Evaluation of 11 known carbon sources for this microalga that were added to standard synthetic wastewater containing the same levels of nitrogen and phosphorus as the municipal wastewater revealed that the best carbon sources for heterotrophic growth were Na‐acetate and d ‐glucose. These provided the highest growth rates and the largest removal of ammonium. Growth increased with concentration of the supplement to an optimum at 0.12 M Na‐acetate. This carbon source was consumed completely within 10 d of incubation. Higher concentrations inhibited the growth of C. vulgaris. The microalgal populations under heterotrophic growth conditions were one level of magnitude higher than that under autotrophic growth conditions that served as a comparison. No growth occurred in the dark in the absence of a carbon source. Na‐acetate was superior to d ‐glucose. In municipal wastewater, when Na‐acetate or d ‐glucose was added, C. vulgaris significantly enhanced ammonium removal under heterotrophic conditions, and its capacity was equal to ammonium removal under autotrophic growth conditions. This study showed that sterilized wastewater can be treated by C. vulgaris under heterotrophic conditions if supplemented with the appropriate organic carbon source for the microalgae.  相似文献   

8.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

9.
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2. Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.  相似文献   

10.
Intrinsic growth and substrate uptake parameters were obtained for Peptostreptococcus productus, strain U-1, using carbon monoxide as the limiting substrate. A modified Monod model with substrate inhibition was used for modeling. In addition, a product yield of 0.25 mol acetate/mol CO and a cell yield of 0.034 g cells/g CO were obtained. While CO was found to be the primary substrate, P. productus is able to produce acetate from CO2 and H2, although this substrate could not sustain growth. Yeast extract was found to also be a growth substrate. A yield of 0.017 g cell/g yeast extract and a product yield of 0.14 g acetate/g yeast extract were obtained. In the presence of acetate, the maximum specific CO uptake rate was increased by 40% compared to the maximum without acetate present. Cell replication was inhibited at acetate concentrations of 30 g/l. Methionine was found to be an essential nutrient for growth and CO uptake by P. productus. A minimum amount of a complex medium such as yeast extract (0.01%) is, however, required.  相似文献   

11.
12.
The nutritional conditions supporting growth and maximum dye removal by Aspergillus lentulus have been investigated. Initially a composite media containing yeast extract, glucose and mineral components was used and the effect of various components on dye removal was studied. For maximum dye removal (≈100%), ≥0.5% (w/v) glucose and ≥0.25% (w/v) yeast extract were essential. While glucose played an important role in pellet formation, which in turn was important for dye removal, yeast extract contributed towards higher biomass production. Mineral components (except NH4NO3) did not affect dye removal significantly. Next the alternate sources of carbon (molasses, jaggery, starch and sodium acetate) and nitrogen (peptone, urea, ammonium nitrate, sodium nitrate and ammonium chloride) were tested. Among carbon sources, all the sources produced almost complete dye removal in 48 h (more than 97% in 24 h), except sodium acetate (64% in 48 h). All the tested nitrogen sources resulted in >90% dye removal in 48 h. Yeast extract and peptone gave best results with high dye removal rate (9.8 and 8.1 mg/l/h, respectively). However, among the low cost alternates, urea and NH4Cl came out to be suitable sources due to the high uptake capacity of the biomass produced coupled with high dye removal rate in case of NH4Cl. Therefore, a combination of urea and NH4Cl was tested, which produced complete dye removal with a high dye removal rate (10 mg/l/h). Finally the modified composite media containing urea and NH4Cl as nitrogen sources and glucose as carbon source was utilized for effluent treatment. Results indicated that performance of modified composite media was at par with composite media for supporting growth of A. lentulus and dye removal from the textile effluent.  相似文献   

13.

Thermophilic microorganisms as well as acetogenic bacteria are both considered ancient. Interestingly, only a few species of bacteria, all belonging to the family Thermoanaerobacteraceae, are described to conserve energy from acetate formation with hydrogen as electron donor and carbon dioxide as electron acceptor. This review reflects the metabolic differences between Moorella spp., Thermoanaerobacter kivui and Thermacetogenium phaeum, with focus on the biochemistry of autotrophic growth and energy conservation. The potential of these thermophilic acetogens for biotechnological applications is discussed briefly.

  相似文献   

14.
  1. Culture filtrates of heterotrophic bacteria were tested for their stimulatory effect on nitrification of three strains of Nitrobacter.
  2. Yeast extract-peptone solution, in which Pseudomonas fluorescens had grown, after removal of the cells was added to autotrophically growing cultures of Nitrobacter agilis; it caused a stimulated nitrite oxidation and growth of Nitrobacter agilis.
  3. The degree of stimulation depended on: a) the proportion of the culture filtrate to the autotrophic medium; b) the composition of the complex medium in which Pseudomonas fluorescens had been grown; c) the time the heterotrophic bacterium had been grown in the complex medium.
  4. The stimulatory effect was highest with Nitrobacter agilis, less with Nitrobacter winogradskyi and negligible with Nitrobacter K 4.
  5. It was possible to adapt nitrifying cells of Nitrobacter agilis to higher concentrations of yeast extract and peptone. After the nitrite had been completely oxidized the cell-N still increased up to 30% before growth stopped.
  相似文献   

15.
Nitrite served as an energy-conserving electron acceptor for the acetogenic bacterium Moorella thermoacetica. Growth occurred in an undefined (0.1% yeast extract) medium containing 20 mM glyoxylate and 5 mM nitrite and was essentially equivalent to that observed in the absence of nitrite. In the presence of nitrite, acetate (the normal product of glyoxylate-derived acetogenesis) was not detected during growth. Instead, growth was coupled to nitrite dissimilation to ammonium, and acetogenesis was limited to the stationary phase. Furthermore, membranes from glyoxylate-grown cells under nitrite-dissimilating conditions were deficient in the b-type cytochrome that is typically found in the membranes of acetogenic cells. Unlike glyoxylate, other acetogenic substrates (fructose, oxalate, glycolate, vanillin, and hydrogen) were not growth supportive in the undefined medium containing nitrite, and glyoxylate-dependent growth did not occur in a nitrite-supplemented, basal (without yeast extract) medium. Glyoxylate-dependent growth by Moorella thermoautotrophica was not observed in the undefined medium containing nitrite. Received: 1 April 2002 / Accepted: 9 July 2002  相似文献   

16.
Summary The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.  相似文献   

17.
Mason  Julie  Kelly  Don P. 《Archives of microbiology》1988,149(4):317-323
Thiobacillus acidophilus can grow in batch and chemostat culture as a heterotroph on glucose, a chemolithoautotroph on tetrathionate and CO2, or as a mixotroph. Mixotrophically it obtains energy from the simultaneous oxidation of tetrathionate and glucose, and carbon from both glucose and CO2. Mixotrophic cultures contain lower activities of ribulose 1,5-bisphosphate carboxylase and exhibit lower specific rates of tetrathionate oxidation than do autotrophic cultures. Mixotrophic cultures with low concentrations of glucose have growth rates that are intermediate between slow autotrophic growth and fast heterotrophic growth. Slightly more glucose-carbon is assimilated by mixotrophic cultures than by heterotrophic ones provided with the same concentrations of glucose. Mixotrophic yield in the chemostat is also slightly greater than predicted from autotrophic and heterotrophic yields. These observations indicate that there is preferential assimilation of glucose, at the expense of energy from tetrathionate oxidation, during mixotrophy, resulting in an overall energy saving that produces enhanced growth yield. These observations are relevant to understanding the regulatory behaviour of T. acidophilus in its acidic, mineral-leaching habitats.  相似文献   

18.
During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation. However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect of overexpressing the native NADH kinase (encoded by the POS5 gene) in xylose-consuming recombinant S. cerevisiae directed either into the cytosol or to the mitochondria was evaluated. The physiology of the NADH kinase containing strains was also evaluated during growth on glucose. Overexpressing NADH kinase in the cytosol redirected carbon flow from CO2 to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol. In contrast, overexpressing NADH kinase in the mitochondria did not affect the physiology to a large extent. Overall, although NADH kinase did not increase the rate of xylose consumption, we believe that it can provide an important source of NADPH in yeast, which can be useful for metabolic engineering strategies where the redox fluxes are manipulated.  相似文献   

19.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

20.
Several hot springs in the Rotorua-Taupo regions, North Island, New Zealand, were tested for the presence of extremely thermophilic acidophilic bacteria. In the majority of the springs, ranging in temperature from 43–96°C and in pH from 2.1–6.9, direct microscopic observations revealed the presence of both rod-shaped and spherical bacteria. Isolations were attempted at 70°C and pH 2.0 and 7.0, with either yeast extract for heterotrophic growth, or elemental sulfur as the sole source of energy for autotrophic growth. Eight of the samples produced grwoth at pH 2.0 with either yeast extract or sulfur, but none of the samples grew at pH 7.0. All the isolates obtained, resembled Sulfolobus acidocaldarius, a thermophilic acidophilic bacterium which has previously been reported from various regions in the Northern Hemisphere. Immunofluorescence examination of six of these isolates revealed varying degrees of cross reactions with two already characterized Sulfolobus isolates from the Yellowstone National Park, U.S.A. This paper is the first published record of Sulfolobus from the Southern Hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号