首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
The proteolytic processing of amyloid β precursor protein (APP) has long been studied because of its association with the pathology of Alzheimer''s disease (AD). The ectodomain of APP is shed by α- or β-secretase cleavage. The remaining membrane bound stub can then undergo regulated intramembrane proteolysis (RIP) by γ-secretase. This cleavage can release amyloid β (Aβ) from the stub left by β-secretase cleavage but also releases the APP intracellular domain (AICD) after α- or β-secretase cleavage. The physiological functions of this proteolytic processing are not well understood. We compare the proteolytic processing of APP to the ligand-dependent RIP of Notch. In this review, we discuss recent evidence suggesting that TAG1 is a functional ligand for APP. The interaction between TAG1 and APP triggers γ-secretase-dependent release of AICD. TAG1, APP and Fe65 colocalise in the neurogenic ventricular zone and in fetal neural progenitor cells in vitro. Experiments in TAG1, APP and Fe65 null mice as well as TAG1 and APP double-null mice demonstrate that TAG1 induces a γ-secretase- and Fe65-dependent suppression of neurogenesis.Key words: Amyloid β precursor protein, APP, TAG1, AICD, Fe65, neurogenesis, Alzheimer''s disease  相似文献   

2.
The proteolytic processing of amyloid β precursor protein (APP) has long been studied because of its association with the pathology of Alzheimer's disease (AD). The ectodomain of APP is shed by α- or β-secretase cleavage. The remaining membrane bound stub can then undergo regulated intramembrane proteolysis (RIP) by γ-secretase. This cleavage can release amyloid β (Aβ) from the stub left by β-secretase cleavage but also releases the APP intracellular domain (AICD) after α- or β-secretase cleavage. The physiological functions of this proteolytic processing are not well understood. We compare the proteolytic processing of APP to the ligand-dependent RIP of Notch. In this review, we discuss recent evidence suggesting that TAG1 is a functional ligand for APP. The interaction between TAG1 and APP triggers γ-secretase-dependent release of AICD. TAG1, APP and Fe65 colocalise in the neurogenic ventricular zone and in fetal neural progenitor cells in vitro. Experiments in TAG1, APP and Fe65 null mice as well as TAG1 and APP double-null mice demonstrate that TAG1 induces a γ-secretase- and Fe65-dependent suppression of neurogenesis.  相似文献   

3.
The beta-amyloid precursor protein (APP)-binding protein Fe65 is involved in APP nuclear signaling and several steps in APP proteolytic processing. In this study, we show that Fe65 stimulates gamma-secretase-mediated liberation of the APP intracellular domain (AICD). The mechanism of Fe65-mediated stimulation of AICD formation appears to be through enhanced production of the carboxyl-terminal fragment substrates of gamma-secretase and direct stimulation of processing by gamma-secretase. The stimulatory capacity of Fe65 is isoform-dependent, as the non-neuronal and a2 isoforms promote APP processing more effectively than the exon 9 inclusive neuronal form of Fe65. Intriguingly, Fe65 stimulation of AICD production appears to be inversely related to pathogenic beta-amyloid production as the Fe65 isoforms profoundly stimulate AICD production and simultaneously decrease Abeta42 production. Despite the capacity of Fe65 to stimulate gamma-secretase-mediated APP proteolysis, it does not rescue the loss of proteolytic function associated with the presenilin-1 familial Alzheimer disease mutations. These data suggest that Fe65 regulation of APP proteolysis may be integrally associated with its nuclear signaling function, as all antecedent proteolytic steps prior to release of Fe65 from the membrane are fostered by the APP-Fe65 interaction.  相似文献   

4.
5.
6.
7.
Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta generation. We determined the crystal structure of the AICD in complex with the C-terminal phosphotyrosine-binding (PTB) domain of Fe65. The unique interface involves the NPxY PTB-binding motif and two alpha helices. The amino-terminal helix of the AICD is capped by threonine T(668), an Alzheimer disease-relevant phosphorylation site involved in Fe65-binding regulation. The structure together with mutational studies, isothermal titration calorimetry and nuclear magnetic resonance experiments sets the stage for understanding T(668) phosphorylation-dependent complex regulation at a molecular level. A molecular switch model is proposed.  相似文献   

8.

Background

A devastating aspect of Alzheimer''s disease (AD) is the progressive deterioration of memory due to neuronal loss. Amyloid precursor protein (APP) occupies a central position in AD and APP-derived amyloid-β (Aβ) peptides are thought to play a pivotal role in disease pathogenesis. Nonetheless, it is becoming clear that AD etiology is highly complex and that factors other than Aβ also contribute to AD pathogenesis. APP intracellular domain (AICD) is generated together with Aβ and we recently showed that AICD transgenic mice recapitulate pathological features of AD such as tau hyperphosphorylation, memory deficits and neurodegeneration without increasing the Aβ levels. Since impaired adult neurogenesis is shown to augment memory deficits in AD mouse models, here we examined the status of adult neurogenesis in AICD transgenic mice.

Methodology/Principal Finding

We previously generated transgenic mice co-expressing 59-residue long AICD fragment and its binding partner Fe65. Hippocampal progenitor cell proliferation was determined by BrdU incorporation at 1.5, 3 and 12 months of age. Only male transgenic and their respective wilt type littermate control mice were used. We find age-dependent decrease in BrdU incorporation and doublecortin-positive cells in the dentate gyrus of AICD transgenic mice suggesting impaired adult neurogenesis. This deficit resulted from decreased proliferation and survival, whereas neuronal differentiation remained unaffected. Importantly, this impairment was independent of Aβ since APP-KO mice expressing AICD also exhibit reduced neurogenesis. The defects in adult neurogenesis are prevented by long-term treatment with the non-steroidal anti-inflammatory agents ibuprofen or naproxen suggesting that neuroinflammation is critically involved in impaired adult neurogenesis in AICD transgenic mice.

Conclusion/Significance

Since adult neurogenesis is crucial for spatial memory, which is particularly vulnerable in AD, these findings suggest that AICD can exacerbate memory defects in AD by impairing adult neurogenesis. Our findings further establish that AICD, in addition to Aβ, contributes to AD pathology and that neuroinflammation plays a much broader role in AD pathogenesis than previously thought.  相似文献   

9.
Alzheimer's disease, a progressive neurodegenerative disorder, affects greater than 10% of the population of individuals greater than 65 years of age. A principal neuropathological feature of this disease is the senile plaque, a fibrillar extracellular deposit primarily composed of a approximately 4-kDa peptide, beta/A4, derived from the amyloid precursor protein (APP). Studies in cultured cells have documented that APP matures through a constitutive secretory pathway and is cleaved at or near the cell surface to release a large ectodomain into the extracellular space. To define the APP cleavage site, we constructed a Chinese hamster ovary cell line, which constitutively overexpresses human APP-770, and analyzed the COOH termini of secreted APP-770-related molecules. Using plasma desorption mass spectrometry and chemical microsequencing, we document that an APP cleavage site in Chinese hamster ovary cells leading to secretion occurs immediately COOH-terminal to lysine residue 687, which lies adjacent to the hydrophobic membrane-spanning domain.  相似文献   

10.
11.
Alzheimer's disease is the most common dementia afflicting the elderly in modern society. This disease arises from the neurotoxicity elicited by abnormal aggregates of amyloid-β (Aβ) protein. Such aggregates form through the cleavage of amyloid precursor protein (APP) by β-secretase and the subsequent proteolysis of the APP C-terminal fragment (APP-βCTF or C99) by γ-secretase to yield Aβ and APP intracellular domain (AICD). Recent evidence suggests that C99 and AICD may exert harmful effects on cells, suggesting that the proteolytic products of APP, including Aβ, C99, and AICD, could play a pivotal role in neuronal viability. Here, we demonstrate that ligand-activated EphA4 signaling governs the proteostasis of C99, AICD, and Aβ, without significantly affecting γ-secretase activity. EphA4 induced accumulation of C99 and AICD through a Lyn-dependent pathway; activation of this pathway triggered phosphorylation of EphA4, resulting in positive feedback of C99 and AICD proteostasis. Inhibition of EphA4 by dasatinib, a receptor tyrosine kinase inhibitor, effectively suppressed C99 and AICD accumulation. Furthermore, EphA4 signaling controlled C99 and AICD proteolysis through the ubiquitin–proteasome system. In conclusion, we have identified an EphA4–Lyn pathway that is essential for the metabolism of APP and its proteolytic derivatives, thereby providing novel pharmacological targets for the development of anti-Aβ therapeutics for AD.  相似文献   

12.
13.
The amyloid precursor protein (APP) is thought to be neuroprotective following traumatic brain injury (TBI), although definitive evidence at moderate to severe levels of injury is lacking. In the current study, we investigated histological and functional outcomes in APP-/- mice compared with APP+/+ mice following a moderate focal injury, and whether administration of sAPPα restored the outcomes in knockout animals back to the wildtype state. Following moderate controlled cortical impact injury, APP-/- mice demonstrated greater impairment in motor and cognitive outcome as determined by the ledged beam and Barnes Maze tests respectively (p < 0.05). This corresponded with the degree of neuronal damage, with APP-/- mice having significantly greater lesion volume (25.0 ± 1.6 vs. 20.3 ± 1.6%, p < 0.01) and hippocampal damage, with less remaining CA neurons (839 ± 245 vs. 1353 ± 142 and 1401 ± 263). This was also associated with an impaired neuroreparative response, with decreased GAP-43 immunoreactivity within the cortex around the lesion edge compared with APP+/+ mice. The deficits observed in the APP-/- mice related to a lack of sAPPα, as treatment with exogenously added sAPPα post-injury improved APP-/- mice histological and functional outcome to the point that they were no longer significantly different to APP+/+ mice (p < 0.05). This study shows that endogenous APP is potentially protective at moderate levels of TBI, and that this neuroprotective activity is related to the presence of sAPPα. Importantly, it indicates that the mechanism of action of exogenously added sAPPα is independent of the presence of endogenous APP.  相似文献   

14.
gamma-Secretase-dependent regulated intramembrane proteolysis of amyloid precursor protein (APP) releases the APP intracellular domain (AICD). The question of whether this domain, like the Notch intracellular domain, is involved in nuclear signalling is highly controversial. Although some reports suggest that AICD regulates the expression of KAI1, glycogen synthase kinase-3beta, Neprilysin and APP, we found no consistent effects of gamma-secretase inhibitors or of genetic deficiencies in the gamma-secretase complex or the APP family on the expression levels of these genes in cells and tissues. Finally, we demonstrate that Fe65, an important AICD-binding protein, transactivates a wide variety of different promoters, including the viral simian virus 40 promoter, independent of AICD coexpression. Overall, the four currently proposed target genes are at best indirectly and weakly influenced by APP processing. Therefore, inhibition of APP processing to decrease Abeta generation in Alzheimer's disease will not interfere significantly with the function of these genes.  相似文献   

15.
16.
17.
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.  相似文献   

18.
19.
Klug W  Dietl A  Simon B  Sinning I  Wild K 《FEBS letters》2011,585(20):3229-3235
Neuronal Fe65 is a central adapter for the intracellular protein network of Alzheimer's disease related amyloid precursor protein (APP). It contains a unique tandem array of phosphotyrosine-binding (PTB) domains that recognize NPXY internalization motifs present in the intracellular domains of APP (AICD) and the low-density lipoprotein receptor-related protein LRP1 (LICD). The ternary APP/Fe65/LRP1 complex is an important mediator of APP processing and affects β-amyloid peptide production. Here we dissect by biochemical and biophysical methods the direct interactions within the ternary complex and reveal a phosphorylation-dependent insulin receptor substrate (IRS-) like interaction of the distal NPVY(4507) motif of LICD with Fe65-PTB1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号