首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5' untranslated region of HIV-1 genomic RNA (gRNA) contains two stem-loop structures that appear to be equally important for gRNA dimerization: the 57-nucleotide 5' TAR, at the very 5' end, and the 35-nucleotide SL1 (nucleotides 243-277). SL1 is well-known for containing the dimerization initiation site (DIS) in its apical loop. The DIS is a six-nucleotide palindrome. Here, we investigated the mechanism of TAR-directed gRNA dimerization. We found that the trinucleotide bulge (UCU24) of the 5' TAR has dominant impacts on both formation of HIV-1 RNA dimers and maturation of the formed dimers. The ΔUCU trinucleotide deletion strongly inhibited the first process and blocked the other, thus impairing gRNA dimerization as severely as deletion of the entire 5' TAR, and more severely than deletion of the DIS, inactivation of the viral protease, or most severe mutations in the nucleocapsid protein. The apical loop of TAR contains a 10-nucleotide palindrome that has been postulated to stimulate gRNA dimerization by a TAR-TAR kissing mechanism analogous to the one used by SL1 to stimulate dimerization. Using mutations that strongly destabilize formation of the TAR palindrome duplex, as well as compensatory mutations that restore duplex formation to a wild-type-like level, we found no evidence of TAR-TAR kissing, even though mutations nullifying the kissing potential of the TAR palindrome could impair dimerization by a mechanism other than hindering of SL1. However, nullifying the kissing potential of TAR had much less severe effects than ΔUCU. By not uncovering a dimerization mechanism intrinsic to TAR, our data suggest that TAR mutations exert their effect 3' of TAR, yet not on SL1, because TAR and SL1 mutations have synergistic effects on gRNA dimerization.  相似文献   

2.
3.
4.
5.
Sequences from the 5' end of type 1 human immunodeficiency virus RNA dimerize spontaneously in vitro in a reaction thought to mimic the initial step of genomic dimerization in vivo. Dimer initiation has been proposed to occur through a "kissing-loop" interaction involving a specific RNA stem-loop element designated SL1: the RNA strands first interact by base pairing through a six-base GC-rich palindrome in the loop of SL1, whose stems then isomerize to form a longer interstrand duplex. We now report a mutational analysis aimed at defining the features of SL1 RNA sequence and secondary structure required for in vitro dimer formation. Our results confirm that mutations which destroy complementarity in the SL1 loop abolish homodimer formation, but that certain complementary loop mutants can heterodimerize. However, complementarity was not sufficient to ensure dimerization, even between GC-rich loops, implying that specific loop sequences may be needed to maintain a conformation that is competent for initial dimer contact; the central GC pair of the loop palindrome appeared critical in this regard, as did two or three A residues which normally flank the palindrome. Neither the four-base bulge normally found in the SL1 stem nor the specific sequence of the stem itself was essential for the interaction; however, the stem structure was required, because interstrand complementarity alone did not support dimer formation. Electron microscopic analysis indicated that the RNA dimers formed in vitro morphologically resembled those isolated previously from retroviral particles. These results fully support the kissing-loop model and may provide a framework for systematically manipulating genomic dimerization in type 1 human immunodeficiency virus virions.  相似文献   

6.
Genomic RNA dimerization is an essential process in the retroviral replication cycle. In vitro, HIV-2 RNA dimerization is mediated at least in part by direct intermolecular interaction at stem-loop 1 (SL1) within the 5'-untranslated leader region (UTR). RNA dimerization is thought to be regulated via alternate presentation and sequestration of dimerization signals by intramolecular base-pairings. One of the proposed regulatory elements is a palindrome sequence (pal) located upstream of SL1. To investigate the role of pal in the regulation of HIV-2 dimerization, we randomized this motif and selected in vitro for dimerization-competent and dimerization-impaired RNAs. Energy minimization folding analysis of these isolated sequences suggests the involvement of pal region in several short-distance intramolecular interactions with other upstream and downstream regions of the UTR. Moreover, the consensus predicted folding patterns indicate the altered presentation of SL1 depending on the interactions of pal with other regions of RNA. The data suggest that pal can act as a positive or negative regulator of SL1-mediated dimerization and that the modulation of base-pairing arrangements that affect RNA dimerization could coordinate multiple signals located within the 5'-UTR.  相似文献   

7.
8.
An essential step in the replication cycle of all retroviruses is the dimerization of genomic RNA prior to or during budding and maturation of the viral particle. In HIV-1, a 5' leader region site termed stem-loop 1 (SL1) promotes RNA dimerization in vitro and influences dimerization in vivo. In HIV-2, two sequences promote dimerization of RNA fragments in vitro: the 5'-end of the primer-binding site (PBS) and a stem-loop region homologous to the HIV-1 SL1 sequence. Because HIV-2 RNA constructs of different lengths use these two dimerization signals disproportionately, we hypothesized that other sequences could modulate their relative utilization. Here, we characterized the influence of sequences upstream and downstream of the major splice donor site on the formation of HIV-2 RNA dimers in vitro using a variety of RNA constructs and dimerization and electrophoresis protocols. We first assayed the formation of loose or tight dimers for 1-444 and 1-561 model RNAs. Although both RNAs could form PBS-dependent loose dimers, the 1-561 RNA was unable to make SL1-dependent tight dimers. Using RNAs truncated at their 5'- and/or 3'-ends and by making compensatory base substitutions, we found that two elements interfere with the formation of SL1-dependent tight dimers. The cores of these elements are located at nucleotides 189-196 and 543-550. Our results suggest that base pairing between these sequences prevents the formation of SL1-dependent tight dimers, probably by sequestering SL1 in a stable intramolecular arrangement. Moreover, we found that nucleotides downstream of SL1 decreased the rate of tight dimerization. Interestingly, dimerization at 37 degrees C in the presence of nucleocapsid protein increased the yield of SL1-mediated tight dimerization in vitro, even in the presence of the two interfering elements, suggesting a relationship between the nucleocapsid protein and activation of the SL1 dimerization signal in vivo.  相似文献   

9.
10.
The leader region of the human immunodeficiency virus type 1 (HIV-1) genome has a highly folded structure, comprising at least two RNA stem-loops [the transactivation response (TAR) and poly(A) hairpins] near its 5' end and four others (SL1 to SL4) downstream. Each of these stem-loops contributes to the function of the HIV-1 packaging signal, which efficiently targets genomic RNA into nascent virions. The central 140-base region of the leader, which includes the U5 and primer binding site (PBS) sequences, is also believed to adopt a complex structure, but the nature of this structure and its possible role in RNA packaging have not been extensively explored. Here we report a mutational analysis identifying at least three separate loci within the U5-PBS region which, when mutated, impair both HIV-1 packaging specificity and infectivity in a single-round proviral assay. In common with those of all previously described packaging signals in the leader, the function of one of these loci appeared to depend on secondary structure rather than on sequence alone. By contrast, the activity of the other two loci did not correlate with any predicted conformations. Moreover, unlike SL1 to SL4, the TAR, poly(A), and U5-PBS hairpins were not bound with high affinity by the nucleocapsid portion of the HIV-1 Gag protein in vitro, implying that they contribute to packaging through a mechanism distinct from that of SL1 to SL4. Our findings confirm the existence and importance of secondary structure around the PBS and demonstrate that functional packaging signals are distributed across the entire HIV-1 leader.  相似文献   

11.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.  相似文献   

12.
Human immunodeficiency virus type 1 encapsidates two copies of viral genomic RNA in the form of a dimer. The dimerization process initiates via a 6-nucleotide palindrome that constitutes the loop of a viral RNA stem-loop structure (i.e., stem loop 1 [SL1], also termed the dimerization initiation site [DIS]) located within the 5' untranslated region of the viral genome. We have now shown that deletion of the entire DIS sequence virtually eliminated viral replication but that this impairment was overcome by four second-site mutations located within the matrix (MA), capsid (CA), p2, and nucleocapsid (NC) regions of Gag. Interestingly, defective viral RNA dimerization caused by the DeltaDIS deletion was not significantly corrected by these compensatory mutations, which did, however, allow the mutated viruses to package wild-type levels of this DIS-deleted viral RNA while excluding spliced viral RNA from encapsidation. Further studies demonstrated that the compensatory mutation T12I located within p2, termed MP2, sufficed to prevent spliced viral RNA from being packaged into the DeltaDIS virus. Consistently, the DeltaDIS-MP2 virus displayed significantly higher levels of infectiousness than did the DeltaDIS virus. The importance of position T12 in p2 was further demonstrated by the identification of four point mutations,T12D, T12E, T12G, and T12P, that resulted in encapsidation of spliced viral RNA at significant levels. Taken together, our data demonstrate that selective packaging of viral genomic RNA is influenced by the MP2 mutation and that this represents a major mechanism for rescue of viruses containing the DeltaDIS deletion.  相似文献   

13.
Mazier S  Genest D 《Biopolymers》2008,89(3):187-196
The SL1 stem-loop is the dimerization initiation site for linking the two copies of the RNA forming the HIV-1 genome. The 26 nucleotides stem contains a defect consisting on a highly conserved G-rich 1-3 asymmetrical internal loop, which is a major site for nucleocapsid protein binding. Several NMR attempts were undertaken to determine the internal loop structure in the SL1 monomer. However, the RNA constructs used in the different studies were largely mutated, in particular with replacement of the nine nucleotides apical loop by a tetraloop, and divergent results were obtained ranging from a rigid structure to a particularly large flexibility. To investigate the reasons for such discrepancies, we used molecular dynamics simulation of the SL1 monomer to probe the effect of mutations on the conformational stability of the internal loop and of the whole stem. It is found that in the wild-type sequence, the internal loop displays conformational variability originating mainly from the nine nucleotides apical loop flexibility that causes large conformational fluctuations (without changing the average structure) in the 7 bp duplex linking the apical and internal loops. The large amplitude atomic motions in the duplex are transmitted to the internal loop in which they induce conformational changes characterized by a labile hydrogen bond network such as G5 successively H-bonded to A29 and G30. On the contrary, with a four nucleotides apical loop, conformational fluctuations in the duplex are reduced by a factor of 2 and are not sufficiently energizing for promoting changes in the internal loop structure at the time scale of the simulations.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) contains two copies of genomic RNA that are noncovalently linked via a palindrome sequence within the dimer initiation site (DIS) stem-loop. In contrast to the current paradigm that the DIS stem or stem-loop is critical for HIV-1 infectivity, which arose from studies using T-cell lines, we demonstrate here that HIV-1 mutants with deletions in the DIS stem-loop are replication competent in peripheral blood mononuclear cells (PBMCs). The DIS mutants contained either the wild-type (5'GCGCGC3') or an arbitrary (5'ACGCGT3') palindrome sequence in place of the 39-nucleotide DIS stem-loop (NL(CGCGCG) and NL(ACGCGT)). These DIS mutants were replication defective in SupT1 cells, concurring with the current model in which DIS mutants are replication defective in T-cell lines. All of the HIV-1 DIS mutants were replication competent in PBMCs over a 40-day infection period and had retained their respective DIS mutations at 40 days postinfection. Although the stability of the virion RNA dimer was not affected by our DIS mutations, the RNA dimers exhibited a diffuse migration profile when compared to the wild type. No defect in protein processing of the Gag and GagProPol precursor proteins was found in the DIS mutants. Our data provide direct evidence that the DIS stem-loop is dispensable for viral replication in PBMCs and that the requirement of the DIS stem-loop in HIV-1 replication is cell type dependent.  相似文献   

15.
16.
17.
18.
19.
The genome of all retrovirus consists of two copies of genomic RNA which are noncovalently linked near their 5' end. A sequence localized immediately upstream from the splice donor site inside the HIV-1 psi-RNA region was identified as the domain responsible for the dimerization initiation. It was shown that a kissing complex and a stable dimer are both involved in the HIV-1Lai RNA dimerization process in vitro. The NCp7 protein activates the dimerization by converting a transient loop-loop complex into a more stable dimer. The structure of this transitory loop-loop complex was recently elucidated by Mujeeb et al. In work presented here, we use NMR spectroscopy to determine the stable extended dimer structure formed from a 23 nucleotides RNA fragment, part of the 35 nucleotides SL1 sequence. By heating to 90 degrees C, then slowly cooling this sequence, we were able to show that an extended dimer is formed. We present evidence for the three dimensional structure of this dimer. NMR data yields evidence for a zipper like motif A8A9.A16 existence. This motif enables the surrounding bases to be positioned more closely and permit the G7 and C17 bases to be paired. This is different to other related sequences where only the kissing complex is observed, we suggest that the zipper like motif AA.A could be an important stabilization factor of the extended duplex.  相似文献   

20.
A unique feature of retroviruses is the packaging of two copies of their genome, noncovalently linked at their 5' ends. In vitro, dimerization of human immunodeficiency virus type 2 (HIV-2) RNA occurs by interaction of a self-complementary sequence exposed in the loop of stem-loop 1 (SL-1), also termed the dimer initiation site (DIS). However, in virions, HIV-2 genome dimerization does not depend on the DIS. Instead, a palindrome located within the packaging signal (Psi) is the essential motif for genome dimerization. We reported previously that a mutation within Psi decreasing genome dimerization and packaging also resulted in a reduced proportion of mature particles (A. L'Hernault, J. S. Greatorex, R. A. Crowther, and A. M. Lever, Retrovirology 4:90, 2007). In this study, we investigated further the relationship between HIV-2 genome dimerization, particle maturation, and infectivity by using a series of targeted mutations in SL-1. Our results show that disruption of a purine-rich ((392)-GGAG-(395)) motif within Psi causes a severe reduction in genome dimerization and a replication defect. Maintaining the extended SL-1 structure in combination with the (392)-GGAG-(395) motif enhanced packaging. Unlike that of HIV-1, which can replicate despite mutation of the DIS, HIV-2 replication depends critically on genome dimerization rather than just packaging efficiency. Gag processing was altered in the HIV-2 dimerization mutants, resulting in the accumulation of the MA-CA-p2 processing intermediate and suggesting a link between genome dimerization and particle assembly. Analysis of revertant SL-1 mutant viruses revealed that a compensatory mutation in matrix (70TI) could rescue viral replication and partially restore genome dimerization and Gag processing. Our results are consistent with interdependence between HIV-2 RNA dimerization and the correct proteolytic cleavage of the Gag polyprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号