首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a method for in situ monitoring of phytoplankton composition changes in a marine environment. The method is based on delayed fluorescence excitation spectra analyzed with CHEMTAX software, which is generally used for determination of phytoplankton communities with HPLC pigment data. Delayed fluorescence (DF) is a photosynthetic parameter that can only be measured in living cells. Algal DF excitation spectra are group-specific, based on their composition of photosynthetic pigments.DF excitation spectra of 14 marine algal species from different families were measured with a delayed fluorescence spectrometer. Mixtures were prepared from northern Adriatic algal species representing six taxonomic groups: dinoflagellates (Prorocentrum minimum), diatoms (Skeletonema costatum), cyanobacteria (Synechococcus sp.), prasinophytes (Micromonas sp.), cryptophytes (Teleaulax sp.), and prymnesiophytes (Isochrysis galbana). The DF excitation spectra (DFS) and HPLC pigment compositions of the mixtures were analyzed with CHEMTAX software. The prediction power of DFS–CHEMTAX method was comparable to HPLC–CHEMTAX.  相似文献   

2.
Despite improvements in wastewater treatment systems, the impact of anthropogenic nutrient sources remains a key issue for the management of European lakes. The Water Framework Directive (WFD) provides a mechanism through which progress can be made on this issue. The Directive requires a classification of the ecological status of phytoplankton, which includes an assessment of taxonomic composition. In this paper, we present a composition metric, the plankton trophic index, that was developed in the WISER EU FP7 project and demonstrate how it has been used to compare national phytoplankton classification systems in Northern and Central Europe. The metric was derived from summer phytoplankton data summarised by genus from 1,795 lakes, covering 20 European countries. We show that it is significantly related to total phosphorus concentrations, but that it is also sensitive to alkalinity, lake size and climatic variables. Through the use of country-specific reference values for the index, we demonstrate that it is significantly related to other national phytoplankton assessment systems and illustrate for a single European (intercalibration) lake type how it was used to intercalibrate WFD boundaries from different countries.  相似文献   

3.
1. Pigment analyses by high performance liquid chromatography (HPLC) are commonly used for determining algal groups in marine and estuarine areas but are underdeveloped in freshwaters. In this study, 15 characteristic pelagic algal species (representing five algal groups) of oligo‐ / mesotrophic lakes were cultured and pigment / Chl a ratios determined at three light intensities. 2. With the exception of cyanophytes, light treatment had little effect on pigment / Chl a ratios. This justifies the use of the same pigment / Chl a ratios during seasonal studies where light conditions may change. 3. The determined pigment / Chl a ratios were tested on seasonal samples from five oligo‐ / mesotrophic lakes and three streams using CHEMTAX software. Pigment ratios of both pelagic and benthic algal communities from the lakes and streams were analysed to determine whether the pelagic algae‐based ratios can be used for benthic algal communities. 4. HPLC combined with CHEMTAX was useful for identifying freshwater phytoplankton classes and for quantifying the abundance of phytoplankton groups. However, although correlations were significant for six of seven phytoplankton classes studied, they were weak and varied with season. 5. HPLC was valid for quantifying benthic diatom groups in stream samples, whereas for lakes more benthic algal groups were recorded with HPLC than with microscopy and correlations between the two methods were not significant. 6. The use of both HPLC and microscopy is recommended as a cost‐efficient method for analysing many samples. It is crucial, however, that the CHEMTAX software is calibrated with the correct information, and the user is aware of the limitations.  相似文献   

4.
We propose and test a new Phytoplankton Community Index (PhyCoI) for monitoring the ecological status of lakes and reservoirs. The design of our PhyCoI is based on the fact that phytoplankton biomass and community structure respond to changes in water quality (mainly eutrophication) and by themselves also influence water quality. In order to accommodate this double role of phytoplankton as indicator and impact, PhyCoI is based on phytoplankton community properties at different hierarchical levels combining both specific metrics (total biomass, taxonomic group biomass, cyanobacteria contribution, taxonomic group species richness) and new or modified sub-indices. It is calculated from the scores of the different metrics/sub-indices resulting in a final index value in the range from 0 to 5, to assess water quality on the basis of five ecological classes according to the Water Framework Directive (WFD). The test of PhyCoI was based on Carlson's Trophic State Index (TSISD) based on water transparency (Secchi depth) in 26 Greek lakes and reservoirs covering the entire spectrum from oligotrophic to hypertrophic. A highly significant relationship at p < 0.001 between the two variables was found, with the values of the PhyCoI declining with increasing TSISD. Furthermore, a significant relationship between the PhyCoI and land use types at the watershed of the studied freshwaters was found identifying permanent crops, pastures and shrubs and herbaceous vegetation associations as significant predictors of PhyCoI values. Because of the amount of labor involved in obtaining the PhyCoI we suggest to combine low frequency PhyCoI determinations with a high frequency Secchi depth measurements for practical monitoring purposes.  相似文献   

5.
Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive.  相似文献   

6.
Many European lakes are monitored according to the EU Water Framework Directive (WFD), with focus on phytoplankton biomass and species composition. However, the low-frequency WFD monitoring may miss short-term phytoplankton changes. This is an important issue because short-term extreme meteorological events (heat waves and heavy rain) are predicted to increase in frequency and intensity with climate change. We used records from Lake Mondsee (Austria) from 2009 to 2015 to test if a reduction from monthly to seasonal sampling affected the average annual phytoplankton biovolume. Furthermore, we combined inverted light microscopy, FlowCAM and flow cytometry to estimate the effect of sampling during extreme events on average phytoplankton biovolume. Relative to monthly sampling, seasonal sampling significantly overestimated phytoplankton biomass. A heat wave in 2015 and two episodes of heavy rain in 2015 and 2016 caused species-specific changes; biovolumes of chlorophytes and the filamentous cyanobacterium Planktothrix rubescens (De Candolle ex Gomont) Anagnostidis & Komárek increased significantly during the heat wave. Using live material with FlowCAM and flow cytometry, we detected small and fragile cells and colonies that were either ignored or underrepresented by analysing fixed samples with light microscopy. We suggest a modified sampling and analysis strategy to capture short-term changes within the phytoplankton community.  相似文献   

7.
1. Pigment analysis by high‐performance liquid chromatography (HPLC) combined with data analysis using the CHEMTAX program has proven to be a fast and precise method for determining the abundance of phytoplankton groups in marine environments. To determine whether CHEMTAX is applicable also to freshwater phytoplankton, 20 different species of freshwater algae were cultured and their pigment/chlorophyll a (Chl a) ratios determined for exponential growth at three different light intensities and for stationary growth at one light intensity. 2. The different treatments had a relatively insignificant impact on the absolute values of the diagnostic pigment/Chl a ratios, with the exception of cyanobacteria and cryptophytes for which the zeaxanthin/Chl a and alloxanthin/Chl a ratios varied considerably. 3. The pigment ratios were tested on samples collected in six different eutrophic Danish lakes during two summer periods using the CHEMTAX program to calculate the biomass of the phytoplankton groups as Chl a. The CHEMTAX‐derived seasonal changes in Chl a biomass corresponded well with the volume of the microscopically determined phytoplankton groups. More phytoplankton groups were detected by the pigment method than by the microscopic method. 4. Applying the pigment ratios developed in this study, the pigment method can be used to determine the abundance of the individual phytoplankton groups, which are useful as biological water quality indicators when determining the ecological status of freshwater lakes.  相似文献   

8.
9.
The recognition and discrimination of phytoplankton species is one of the foundations of freshwater biodiversity research and environmental monitoring. This step is frequently a bottleneck in the analytical chain from sampling to data analysis and subsequent environmental status evaluation. Here we present phytoplankton diversity data from 49 lakes including three seasonal surveys assessed by next generation sequencing (NGS) of 16S ribosomal RNA chloroplast and cyanobacterial gene amplicons and also compare part of these datasets with identification based on morphology. Direct comparison of NGS to microscopic data from three time-series showed that NGS was able to capture the seasonality in phytoplankton succession as observed by microscopy. Still, the PCR-based approach was only semi-quantitative, and detailed NGS and microscopy taxa lists had only low taxonomic correspondence. This is probably due to, both, methodological constraints and current discrepancies in taxonomic frameworks. Discrepancies included Euglenophyta and Heterokonta that were scarce in the NGS but frequently detected by microscopy and Cyanobacteria that were in general more abundant and classified with high resolution by NGS. A deep-branching taxonomically unclassified cluster was frequently detected by NGS but could not be linked to any group identified by microscopy. NGS derived phytoplankton composition differed significantly among lakes with different trophic status, showing that our approach can resolve phytoplankton communities at a level relevant for ecosystem management. The high reproducibility and potential for standardization and parallelization makes our NGS approach an excellent candidate for simultaneous monitoring of prokaryotic and eukaryotic phytoplankton in inland waters.  相似文献   

10.
Phytoplankton microscopic enumerations and HPLC analyses of their pigments were performed weekly for a complete year at a coastal station in the English Channel. The taxonomic composition of the phytoplankton community was assessed using the HPLC results combined with the mathematical tool CHEMTAX in two different ways. Firstly, without using the species level taxonomic information obtained at the microscopic level (blind analyses), and secondly by including the information from the microscopic taxonomic analysis (directed analyses). The results indicate that, due to the particular pigment composition of some species (for example, the dinoflagellate, Karenia mikimotoi and the haptophyte, Phaeocystis pouchetii), a blind analysis would result in very significant errors in the taxonomic determination of the bloom events at this station. Major blooms of Karenia mikimotoi and P. pouchetii were mistaken for blooms of diatoms on the basis of a blind HPLC-CHEMTAX analysis. Only with the information from the microscopic observations was it possible to obtain an accurate representation of the phytoplankton community.Communicated by H.-D. Franke  相似文献   

11.
A new phytoplankton metric is presented, which is developed from a large dataset of Norwegian lakes (>2,000 samples from >400 lakes). In contrast to previous metrics, this index is not built on selected ‘indicative’ taxa, but uses all available taxonomic information at genus and species level. Taxa optima with respect to lake trophic status (derived from total phosphorus concentrations) are used to calculate a phytoplankton trophic index (TI) for each sample. Analysis of the TI shows that phytoplankton communities exhibit highly non-linear responses to eutrophication in Norwegian lakes. Reference lakes are characterized by very similar TIs despite having considerable variation in total phosphorus and chlorophyll a concentrations. TI exhibits a non-linear distribution along the eutrophication gradient which separates unimpacted from impacted sites in the study area. We further show that TI exhibits smaller seasonal variations than chlorophyll a, making it a more reliable indicator for lake monitoring. Implications for its applicability within the WFD are discussed.  相似文献   

12.
Microphytobenthos (MPB) and phytoplankton are important primary producers in the estuarial ecosystem, and their functions are critical to the ecosystem's biodiversity and environmental safety. The aim of this study was to compare the response of MPB and phytoplankton to the nutrient loads in a eutrophic estuary, which has seldom been studied. We used high‐performance liquid chromatography (HPLC) and CHEMTAX software to examine the biomass and taxonomic composition of both MPB and phytoplankton at Da‐yu Island (DYI) and Ji‐yu Island (JYI) in the Jiulong River Estuary from July 2010 to March 2012. The results showed that MPB chlorophyll a was low in the summer and high in the winter at both DYI and JYI, indicating a unimodal pattern. However, the phytoplankton chlorophyll a showed a mirrored pattern. Diatoms were the dominant class in both benthic and pelagic environments. Although redundancy analysis indicated that the effects of different environmental factors could not be easily separated, it is likely that phosphate and temperature were the most important factors regulating the seasonal patterns of MPB and phytoplankton diatoms, respectively. MPB and phytoplankton cyanobacteria was co‐limited by salinity and temperature. The high N/P ratio and low phosphate favored chlorophytes and cyanobacteria. Our study demonstrates the use of HPLC and CHEMTAX in an integrated survey of the spatial and temporal distribution patterns of MPB and phytoplankton in an estuarial ecosystem. The contrasting responses of MPB and phytoplankton to nutrient loads indicate the critical role of MPB in subtropical estuarial ecosystem function. The relationship between nutrients and MPB may indicate a significant contribution to carbon and nutrient cycling.  相似文献   

13.
With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.  相似文献   

14.
The growing need to analyse the present state of ecosystems and predict their rate of change has triggered a demand to explore species environment relationships for assessing alterations under anthropogenic influence. The Water Framework Directive (WFD) requires the definition of different types of water bodies which are of relevance when assessing their ecological status. The main aim of this study was to define of the types of Portuguese reservoirs located in the North and Centre of Portugal and to assess their ecological status using phytoplankton as water quality indicators. In this study, sampling was carried out in 34 reservoirs during four seasons (spring, summer, autumn and winter), through a period of 8 years (1996–2004).Two groups of reservoirs could be distinguished, from the multivariate statistical analysis based on environmental variables and on phytoplankton assemblages: G1, lowland reservoirs located in the main rivers (Douro and Tagus), with a very low residence time, characterized by higher water mineral content (hardness and conductivity), higher concentrations of nutrients (namely, nitrates), dominated by Bacillariophyta and Chlorophyta and characterized by the presence of tolerant of poor environmental conditions species, mainly associated with meso and eutrophic states of water bodies; G2, deeper high altitude reservoirs, largely located in tributaries, with high residence time, presenting a specific species composition under reference conditions, with higher species richness. The transition from deeper and colder reservoirs (reference sites) to shallow and warmer reservoirs (impaired sites), was evident in G2, contrarily to G1, and was mostly positively correlated to organic pollution and mineral gradients. The results presented here are fundamental for the development of a routine for monitoring ecological status according to the WFD.  相似文献   

15.
Lake phytoplankton are adopted world-wide as a sensitive indicator of water quality. European environmental legislation, the EU Water Framework Directive (WFD), formalises this, requiring the use of phytoplankton to assess the ecological status of lakes and coastal waters. Here we provide a rigorous assessment of a number of proposed phytoplankton metrics for assessing the ecological quality of European lakes, specifically in response to nutrient enrichment, or eutrophication, the most widespread pressure affecting lakes. To be useful indicators, metrics must have a small measurement error relative to the eutrophication signal we want them to represent among lakes of different nutrient status. An understanding of variability in metric scores among different locations around a lake, or due to sampling and analytical variability can also identify how best this measurement error is minimised.To quantify metric variability, we analyse data from a multi-scale field campaign of 32 European lakes, resolving the extent to which seven phytoplankton metrics (including chlorophyll a, the most widely used metric of lake quality) vary among lakes, among sampling locations within a lake and through sample replication and processing. We also relate these metrics to environmental variables, including total phosphorus concentration as an indicator of eutrophication.For all seven metrics, 65–96% of the variance in metric scores was among lakes, much higher than variability occurring due to sampling/sample processing. Using multi-model inference, there was strong support for relationships between among-lake variation in three metrics and differences in total phosphorus concentrations. Three of the metrics were also related to mean lake depth. Variability among locations within a lake was minimal (<4%), with sub-samples and analysts accounting for much of the within-lake metric variance. This indicates that a single sampling location is representative and suggests that sub-sample replication and standardisation of analyst procedures should result in increased precision of ecological assessments based upon these metrics.For three phytoplankton metrics being used in the WFD: chlorophyll a concentration, the Phytoplankton Trophic Index (PTI) and cyanobacterial biovolume, >85% of the variance in metric scores was among-lakes and total phosphorus concentration was well supported as a predictor of this variation. Based upon this study, we can recommend that these three proposed metrics can be considered sufficiently robust for the ecological status assessment of European lakes in WFD monitoring schemes.  相似文献   

16.
External nutrient loading was reduced over the past decades as a measure for improving the water quality of eutrophic lakes in western Europe, and has since been accelerated by the adoption of the European Water Framework Directive (WFD) in 2000 (EC, 2000). A variety of eutrophication-related metrics have indicated that the response of biological communities to this decreased nutrient loading has been diverse. Phytoplankton, a major component of the pelagic community, often responded rapidly, whereas a significant delay was observed for submerged macrophytes colonizing littoral areas. In this study we tested whether assessment methods developed for phytoplankton and macrophytes in lakes during Germany's implementation of the WFD reflect this differential response. An assessment of 263 German lakes confirmed that a lower ecological state was recorded when based on the biological quality element (BQE) for macrophytes than the BQE for phytoplankton during the investigated period (2003–2012). On average, lakes had a moderate ecological status for both phytoplankton and macrophyte BQEs, but differences of up to three classes were observed in single cases. Long-term data were available for five lowland lakes subject to strong reductions in phosphorus loading. Their phytoplankton-based assessments indicated a constant improvement of the ecological status in parallel to decreasing water phosphorus concentrations. In contrast, macrophyte-based assessments indicated a 10–20 year delay in their ecological recovery following nutrient load reduction. This delay was confirmed by detailed data on the temporal development of macrophyte species diversity and maximum colonization depths of two lakes after nutrient load reduction. We conclude that the available WFD assessment methods for phytoplankton and macrophyte BQEs are suitable to track the differential response of pelagic and littoral areas to nutrient load reductions in German lakes.  相似文献   

17.
Diagnostic photopigment analysis is a useful tool for determining the presence and relative abundance of algal groups in natural phytoplankton assemblages. This approach is especially useful when a genus has a unique photopigment composition. The toxic dinoflagellate Karenia brevis (Davis) G. Hansen & Moestrup comb. nov. shares the diagnostic pigment gyroxanthin‐diester with only a few other dinoflagellates and lacks peridinin, one of the major diagnostic pigments of most dinoflagellate species. In this study, measurements of gyroxanthin‐diester and other diagnostic pigments of K. brevis were incorporated into the initial pigment ratio matrix of the chemical taxonomy program (CHEMTAX) to resolve the relative contribution of K. brevis biomass in mixed estuarine phytoplankton assemblages from Florida and Galveston Bay, Texas. The phytoplankton community composition of the bloom in Galveston Bay was calculated based on cell enumerations and biovolumetric measurements in addition to chl a‐specific photopigment estimates of biomass (HPLC and CHEMTAX). The CHEMTAX and biovolume estimates of the phytoplankton community structure were not significantly different and suggest that the HPLC–CHEMTAX approach provides reasonable estimates of K. brevis biomass in natural assemblages. The gyroxanthin‐diester content per cell of K. brevis from Galveston Bay was significantly higher than in K. brevis collected from the west coast of Florida. This pigment‐based approach provides a useful tool for resolving spatiotemporal distributions of phytoplankton in the presence of K. brevis blooms, when an appropriate initial ratio matrix is applied.  相似文献   

18.
The seasonal variation of phytoplankton in an eutrophic tropical reservoir was evaluated through photosynthetic pigments analyzed by HPLC. The contributions of algal classes to total chlorophyll a (TChl-a) were estimated by two procedures. The first one used fixed marker pigment/chlorophyll a ratio available from culture studies of the major species of each class. In the second procedure, a matrix factorization program (CHEMTAX) was used to analyze the pigment data. The pigment data were compared with carbon biomass estimated from microscope analysis. A significant correlation between total chlorophyll a (measured by HPLC) and total biomass was obtained, indicating only a slight variation in the content of algal chlorophyll a when compared to its fluctuations in carbon biomass. The interpretation of pigment data with CHEMTAX resulted in a good agreement with biomass. Although displaying some differences, the general pattern of the phytoplankton community dynamics and the major shifts in composition, biomass and the cyanobacterial bloom were evidenced. In contrast, Chl-a biomass estimates from fixed Xan/Chl-a ratios presented poor agreement with microscope data and did not register the principal changes in phytoplankton. Our results also highlighted the needs of better understanding of the relationships between marker pigments, chlorophyll-a and algal biomass.  相似文献   

19.
Drivers of phytoplankton diversity in Lake Tanganyika   总被引:1,自引:0,他引:1  
In keeping with the theme of this volume, the present article commemorates the 50 years of Hutchinson’s (Am Nat 93:145–159, 1959) famous publication on the ‘very general question of animal diversity’, which obviously leads to the more important question regarding the driving forces of biodiversity and their limitation in various habitats. The study of phytoplankton in large lakes is a challenging task which requires the use of a wide variety of techniques to capture the range of spatial and temporal variations. The analysis of marker pigments may provide an adequate tool for phytoplankton surveys in large water bodies, thanks to automated analysis for processing numerous individual samples, and by achieving sufficient taxonomic resolution for ecological studies. Chlorophylls and carotenoids were analysed by HPLC in water column samples of Lake Tanganyika from 2002 through 2006, at two study sites, off Kigoma (north basin) and off Mpulungu (south basin). Using the CHEMTAX software for calculating contributions of the main algal groups to chlorophyll a, variations of phytoplankton composition and biomass were determined. We also investigated selected samples according to standard taxonomic techniques for elucidating the dominant species composition. Most of the phytoplankton biomass was located in the 0–40 m layer, with maxima at 0 or 20 m, and more rarely at 40 m. Deep chlorophyll maxima (DCM) and surface ‘blooms’ were occasionally observed. The phytoplankton assemblage was essentially dominated by chlorophytes and cyanobacteria, with diatoms developing mainly in the dry season. The dominant cyanobacteria were very small unicells (mostly Synechococcus), which were much more abundant in the southern basin, whereas green algae dominated on average at the northern site. A canonical correspondence analysis (CCA) including the main limnological variables, dissolved nutrients and zooplankton abundance was run to explore environment–phytoplankton relations. The CCA points to physical factors, site and season as key determinants of the phytoplankton assemblage, but also indicates a significant role, depending on the studied site, of calanoid copepods and of nauplii stages. Our data suggest that the factors allowing coexistence of several phytoplankton taxa in the pelagic zone of Lake Tanganyika are likely differential vertical distribution in the water column, which allows spatial partitioning of light and nutrients, and temporal variability (occurring at time scales preventing long-term dominance by a single taxon), along with effects of predation by grazers.  相似文献   

20.
Data on phytoplankton, macrophytes, benthic invertebrates and fish from more than 2000 lakes in 22 European countries were used to develop and test metrics for assessing the ecological status of European lakes as required by the Water Framework Directive. The strongest and most sensitive of the 11 metrics responding to eutrophication pressure were phytoplankton chlorophyll a, a taxonomic composition trophic index and a functional traits index, the macrophyte intercalibration taxonomic composition metric and a Nordic lake fish index. Intermediate response was found for a cyanobacterial bloom intensity index (Cyano), the Ellenberg macrophyte index and a multimetric index for benthic invertebrates. The latter also responded to hydromorphological pressure. The metrics provide information on primary and secondary impacts of eutrophication in the pelagic and the littoral zone of lakes. Several of these metrics were used as common metrics in the intercalibration of national assessment systems or have been incorporated directly into the national systems. New biological metrics have been developed to assess hydromorphological pressures, based on aquatic macrophyte responses to water level fluctuations, and on macroinvertebrate responses to morphological modifications of lake shorelines. These metrics thus enable the quantification of biological impacts of hydromorphological pressures in lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号