首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new phytoplankton metric is presented, which is developed from a large dataset of Norwegian lakes (>2,000 samples from >400 lakes). In contrast to previous metrics, this index is not built on selected ‘indicative’ taxa, but uses all available taxonomic information at genus and species level. Taxa optima with respect to lake trophic status (derived from total phosphorus concentrations) are used to calculate a phytoplankton trophic index (TI) for each sample. Analysis of the TI shows that phytoplankton communities exhibit highly non-linear responses to eutrophication in Norwegian lakes. Reference lakes are characterized by very similar TIs despite having considerable variation in total phosphorus and chlorophyll a concentrations. TI exhibits a non-linear distribution along the eutrophication gradient which separates unimpacted from impacted sites in the study area. We further show that TI exhibits smaller seasonal variations than chlorophyll a, making it a more reliable indicator for lake monitoring. Implications for its applicability within the WFD are discussed.  相似文献   

2.
Research to develop tools to assess the ecological status of phytobenthos, as required in Annex V of the European Union Water Framework Directive, has focussed largely on diatoms. Diatoms are often the most abundant and diverse group of algae within the phytobenthos and have been used widely for other monitoring purposes. However, there is little empirical justification for the use of diatoms as proxies for the wider phytobenthos. In this paper, we re-examine an existing dataset compiled largely from littoral samples from standing waters in the English Lake District and compared transfer functions for total phosphorus, dissolved inorganic carbon, conductivity and calcium concentration generated from diatoms and non-diatoms separately and together. The results show that transfer functions generated from diatoms alone are as powerful as transfer functions generated from diatoms and non-diatoms combined, while transfer functions generated from non-diatoms alone are less effective. These results provide support for the use of diatoms as proxies for phytobenthos when ecological status is being assessed. Handling editor: J. Saros  相似文献   

3.
The Water Framework Directive (WFD) demands consideration of normative definitions for assessing ecological state of marine waters. For phytoplankton, ‘deviations from the ideal’ need to be considered for species composition and abundance, average biomass and the occurrence of blooms. A combination of phytoplankton metrics has been developed which, when considered in combination, should provide a confident assessment of the ecological state of each water body under assessment. The aim of this study was to evaluate phytoplankton community structure in different coastal and estuarine water bodies within England and Wales, and to contribute evidence towards the development of a community-based phytoplankton indicator. Influences of seasonality on the species assemblage were tested using a long-term data set available from a long-term monitoring site just offshore of Plymouth, UK. There is a substantive seasonal influence to the data, with a maximum of 10–14 common species (out of a potential 20) reoccurring within the same calendar month over a 10-year time span. Comparisons between reference and test water bodies give a range of common species of between 3 and 11 species within water type and season. A statistical and qualitative approach for comparing the most common species occurring between a reference and test site were tested for development of a WFD phytoplankton assessment tool. Overall, the results indicate that there are distinct phytoplankton assemblages over seasons which could form the basis of a community assessment metric. However, differences in boundary conditions are negligible between the different areas. There is evidence that community populations may be ubiquitous across marine water types in England and Wales, and development of generic seasonal lists across typologies could be appropriate in the further development of this tool.  相似文献   

4.
1. Pigment analyses by high performance liquid chromatography (HPLC) are commonly used for determining algal groups in marine and estuarine areas but are underdeveloped in freshwaters. In this study, 15 characteristic pelagic algal species (representing five algal groups) of oligo‐ / mesotrophic lakes were cultured and pigment / Chl a ratios determined at three light intensities. 2. With the exception of cyanophytes, light treatment had little effect on pigment / Chl a ratios. This justifies the use of the same pigment / Chl a ratios during seasonal studies where light conditions may change. 3. The determined pigment / Chl a ratios were tested on seasonal samples from five oligo‐ / mesotrophic lakes and three streams using CHEMTAX software. Pigment ratios of both pelagic and benthic algal communities from the lakes and streams were analysed to determine whether the pelagic algae‐based ratios can be used for benthic algal communities. 4. HPLC combined with CHEMTAX was useful for identifying freshwater phytoplankton classes and for quantifying the abundance of phytoplankton groups. However, although correlations were significant for six of seven phytoplankton classes studied, they were weak and varied with season. 5. HPLC was valid for quantifying benthic diatom groups in stream samples, whereas for lakes more benthic algal groups were recorded with HPLC than with microscopy and correlations between the two methods were not significant. 6. The use of both HPLC and microscopy is recommended as a cost‐efficient method for analysing many samples. It is crucial, however, that the CHEMTAX software is calibrated with the correct information, and the user is aware of the limitations.  相似文献   

5.
The Water Framework Directive (WFD) requires EU Member States to assess the “ecological status” of surface waters. As a component of ecological status, many European countries are developing a classification scheme for chlorophyll concentrations as a measure of phytoplankton biomass. The chlorophyll classification must be based on the degree of divergence of a water body from an appropriate baseline or ‘reference condition’. This article describes the development of a series of regression models for predicting reference chlorophyll concentrations on a site-specific basis. For model development, a large dataset of European lakes considered to be in reference condition, 466 lakes in total, was assembled. Data were included from 12 European countries, but lakes from Northern and Western Europe dominated and made up 92% of all reference lakes. Data have been collated on chlorophyll concentration, altitude, mean depth, alkalinity, humic type, surface area and geographical region. Regression models were developed for estimating site-specific reference chlorophyll concentrations from significant predictor ‘typology’ variables. Reference chlorophyll concentrations were found to vary along a number of environmental gradients. Concentrations increased with colour and alkalinity and decreased with lake depth and altitude. Forward selection was used to identify independent explanatory variables in regression models for predicting site-specific reference chlorophyll concentrations. Depth was selected as an explanatory variable in all models. Alkalinity was included in models for low colour and humic lakes and altitude was included in models for low colour and very humic lakes. Uncertainty in the models was quite high and arises from errors in the data used to develop the models (including natural temporal and spatial variability in data) and also from additional explanatory variables not considered in the models, particularly nutrient concentrations, retention time and grazing. Despite these uncertainties, site-specific reference conditions are still recommended in preference to type-specific reference conditions, as they use the individual characteristics of a site known to influence phytoplankton biomass, rather than adopt standards set to generally represent a large population of lakes of a particular type. For this reason, site-specific reference conditions should result in reduced error in ecological status classifications, particularly for lakes close to typology boundaries.  相似文献   

6.
The intercalibration (IC) exercise is a key element in the implementation of the Water Framework Directive (WFD) in Europe. Its focus lies on the harmonization of national classification methods to guarantee a common understanding of ‘Good Ecological Status’ in surface waters. This article defines reference conditions and sets class boundaries for deep (mean depth >15 m, IC lake type L-AL3) and moderately deep (mean depth 3–15 m, IC lake type L-AL4) Alpine lakes >0.5 km2. Data were collated from each of the five EU member states included in the Alpine Geographical Intercalibration Group (Alpine GIG: Austria, France, Germany, Italy and Slovenia). Hydro-morphological, chemical and biological data from 161 sites (sampling stations) in 144 Alpine lakes over a period of seven decades were collated in a database. Based on a set of reference criteria, 18 L-AL3 and 13 L-AL4 reference sites were selected. Reference conditions were defined using a combined approach, based on historical, paleolimnological and monitoring data in conjunction with trophic modelling and expert judgement. Reference values and class boundaries were set for annual mean total biomass (biovolume), and then derived for annual mean chlorophyll-a using a regression between the two parameters. In order to allow for geographical differences within the Alpine GIG and to facilitate the inclusion of the broadly defined common IC types and national lake types, ranges were defined for each reference value. Range of reference values are 0.2–0.3 mg l?1 (L-AL3) and 0.5–0.7 mg l?1 (L-AL4) for total biovolume and 1.5–1.9 μg l?1 (L-AL3) and 2.7–3.3 μg l?1 (L-AL4) for chlorophyll-a. Depending on lake type and variable, the ecological quality ratios (EQR) for setting the class boundaries lie between 0.60 and 0.75 for the high/good class boundary and between 0.25 and 0.41 for the good/moderate class boundary. The response of sensitive phytoplankton taxa along a nutrient gradient and the occurrence of ‘undesirable conditions and secondary effects’ as defined in the WFD was used to validate the class boundary values, which are thus considered to be compliant with the requirements of the WFD.  相似文献   

7.
8.
The EU’s Water Framework Directive requires all surface water bodies to be classified according to their ecological status. As biological communities show both spatial and temporal heterogeneity, expressions of ecological status will, inevitably, have an element of uncertainty associated with them. A consequence of this environmental heterogeneity is that there is a risk that status inferred from one or more samples is different to the true status of that water body. In order to quantify the scale of temporal uncertainty associated with benthic diatoms, replicate samples were collected from sites across the ecological status gradient in lakes and rivers in the UK. Variability (expressed as standard deviation of temporal replicate samples from a single site) could be described using a polynomial function and this was then used to calculate the risk of placing a water body in the wrong ecological status class. This risk varied depending on the distance from the class boundaries and the number of replicates. Based on these data, we recommend that ecological status is determined from a number of samples collected from a site over a period of time.  相似文献   

9.
The submerged macrophyte vegetation of lakes created after enclosing former estuaries, situated in the central and south-western part of the Netherlands, has been monitored annually from 1992 onwards. Between 1992 and 2004, pronounced changes in overall cover and species composition of the submerged vegetation have occurred, resulting from changes of water quality and morphology in the lakes. In most cases vegetation cover and species diversity increased or remained stable, with the exception of two lakes in the southwest part of the country. Abundance and species composition were assessed according to the requirements of the EU Water Framework Directive, using the assessment procedure proposed to assess macrophytes in natural water bodies in the Netherlands. The assessment procedure included calculation of the ‘ecological quality ratio’ (EQR) for each of eleven water bodies in each of 13 years, based on transect monitoring data. The EQR indicating Good Ecological Status for Macrophytes was achieved in only three of the lakes. The consequences of hydromorphological modifications, and measures necessary to achieve the desired condition are discussed. Nutrient concentrations should be reduced further, while additional management measures are necessary to improve conditions for macrophytes.  相似文献   

10.
This review summarises the existing literature and outlines the theoretical basis for using standard methods for sampling diatoms from rivers to sample littoral diatoms and other phytobenthos from standing waters. The European Union's Water Framework Directive has created a statutory obligation for EU Member States to monitor macrophytes and phytobenthos in lakes. Although there has been a considerable amount of work using phytobenthos (especially diatoms) to monitor river water quality in Europe, there are fewer studies on the use of phytobenthos for monitoring in lakes. European standard methods for sampling diatoms from rivers should be suitable, with only minor modifications, for sampling littoral diatoms from lakes and other standing water bodies. These recommendations should be applicable to all temperate regions.  相似文献   

11.
1. Pigment analysis by high‐performance liquid chromatography (HPLC) combined with data analysis using the CHEMTAX program has proven to be a fast and precise method for determining the abundance of phytoplankton groups in marine environments. To determine whether CHEMTAX is applicable also to freshwater phytoplankton, 20 different species of freshwater algae were cultured and their pigment/chlorophyll a (Chl a) ratios determined for exponential growth at three different light intensities and for stationary growth at one light intensity. 2. The different treatments had a relatively insignificant impact on the absolute values of the diagnostic pigment/Chl a ratios, with the exception of cyanobacteria and cryptophytes for which the zeaxanthin/Chl a and alloxanthin/Chl a ratios varied considerably. 3. The pigment ratios were tested on samples collected in six different eutrophic Danish lakes during two summer periods using the CHEMTAX program to calculate the biomass of the phytoplankton groups as Chl a. The CHEMTAX‐derived seasonal changes in Chl a biomass corresponded well with the volume of the microscopically determined phytoplankton groups. More phytoplankton groups were detected by the pigment method than by the microscopic method. 4. Applying the pigment ratios developed in this study, the pigment method can be used to determine the abundance of the individual phytoplankton groups, which are useful as biological water quality indicators when determining the ecological status of freshwater lakes.  相似文献   

12.
Chemical and biological data from more than 5,000 lakes in 20 European countries have been compiled into databases within the EU project REBECCA. The project’s purpose was to provide scientific support for implementation of the EU Water Framework Directive (WFD). The databases contain the biological elements phytoplankton, macrophytes, macroinvertebrates and fish, together with relevant chemistry data and station information. The common database strategy has enabled project partners to perform analyses of chemical–biological relationships and to describe reference conditions for large geographic regions in Europe. This strategy has obvious benefits compared with single-country analyses: results will be more representative for larger European regions, and the statistical power and precision will be larger. The high number of samples within some regions has also enabled analysis of type-specific relationships for several lake types. These results are essential for the intercalibration of ecological assessment systems for lakes, as required by the WFD. However, the common database approach has also involved costs and limitations. The data process has been resource-demanding, and the requirements for a flexible database structure have made it less user-friendly for project partners. Moreover, there are considerable heterogeneities among datasets from different countries regarding sampling methods and taxonomic precision; this may reduce comparability of the data and increase the uncertainty of the results. This article gives an overview of the contents and functions of the REBECCA Lakes databases, and of our experiences from constructing and using the databases. We conclude with recommendations for compilation of environmental data for future international projects.  相似文献   

13.
14.
Recurrent occurrences of visible mucilage “clouds” that cover areas up to several hundred kilometres with vertical dimensions of 20–30 m have been recorded in the stratified water column in the northern Adriatic. In the past this was described as “mare sporco” phenomenon. Past studies of the phenomenon indicated that phytoplankton is an important component of mucilage. Our research revealed the composition of phytoplankton assemblages in different types of mucilaginous aggregates collected during the summers of 1997 and 2000 using pigment biomarkers (HPLC). Phytoplankton biomass in the mucilage samples was very high, ranging from 7.9 μg g−1 to 390.8 μg g−1 of chlorophyll a per unit of dry mass of mucilage. The phytoplankton community in the early, loose stage of mucilaginous aggregates was heterogeneous, as indicated by the diversity of detected pigments. The number of phytoplankton groups decreased as the aggregates aged and diatoms increased in relative biomass (up to 92.7%). Phytoplankton biomass in seawater was similar in years with and without mucilage; however, significantly higher contributions to the total biomass of 19′-hexanoyloxyfucoxanthin-containing phytoplankton (prymnesiophytes) were found in the upper 10 m in spring of the “mucilaginous years” (1997 and 2000) followed by prevalence of diatoms in summer. The Fp pigment index used to assess seawater trophic conditions reached lower values in April–May in mucilaginous years (1997 and 2000) compared to non-mucilaginous years (1998 and 1999). We conclude that the role of prymnesiophytes and other small flagellates is crucial for the initial phases of mucilage appearance. Aggregates represent a favourable environment for the secondary development of opportunistic diatoms that foster mucilage formation.  相似文献   

15.
Defining the overall ecological status of lakes according to the Water Framework Directive (WFD) is to be partially based on the species composition of the aquatic macrophyte community. We tested three assessment methods to define the ecological status of the macrophyte community in response to a eutrophication pressure as reflected by total phosphorus concentrations in lake water. An absolute species richness, a trophic index (TI) and a lake trophic ranking (LTR) method were tested at Europe-wide, regional and national scales as well as by alkalinity category, using data from 1,147 lakes from 12 European states. Total phosphorus data were used to represent the trophic status of individual samples and were plotted against the calculated TI and LTR values. Additionally, the LTR method was tested in some individual lakes with a relatively long time series of monitoring data. The TI correlated well with total P in the Northern European lake types, whereas the relationship in the Central European lake types was less clear. The relationship between total P and light extinction is often very good in the Northern European lake types compared to the Central European lake types. This can be one of the reasons for a better agreement between the indices and eutrophication pressure in the Northern European lake types. The response of individual lakes to changes in the abiotic environment was sometimes represented incorrectly by the indices used, which is a cause of concern for the use of single indices in status assessments in practice.  相似文献   

16.
Littoral diatoms are important contributors of the primary production in shallow aquatic ecosystems and they can be used as indicators of the trophic status. The aim of the study was to develop an index to assess trophic status of Hungarian lakes as suggested by the Water Framework Directive. In spring of 2005 and 2006, epiphytic diatom samples were collected from 83 shallow lakes. Weighted average method was used to develop and test the TP model. In the developed TP model correlation between the observed and diatom inferred TP was high (r 2 = 0.96, n = 67). The optimum and tolerance TP parametrics of 127 species were determined and trophic indicator and sensibility values were defined for the Trophic Diatom Index for Lakes (TDIL). The TDIL was applicable to assess the ecological status of Hungarian shallow lakes. According to the TDIL the ecological status of 4 lakes were in excellent, 25 in good, 21 in medium, 21 in tolerable and 12 in bad status. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: K. Martens  相似文献   

17.
The purpose of this study was to verify the longitudinal distribution of phytoplankton biomass in two subtropical Brazilian reservoirs in the State of Paraná and investigate intervening factors on changes in phytoplankton biomass according to functional groups. In the Capivari and Segredo reservoirs, samples were obtained every 3 months during 2002, along a longitudinal axis (fluvial, transition, and lacustrine zones) at different depths. One hundred and eighteen taxa were identified, with Chlorophyceae as the most specious group. During the study period, both reservoirs had mostly low biomass values (less than 1 mm3 l−1). The short retention time of these reservoirs constituted the principal limiting factor to phytoplankton development. Biomass values above 1 mm3 l−1 were observed in the Capivari fluvial zone in March and in the Segredo lacustrine zone in December, with dominance by Microcystis aeruginosa Kütz (LM) and Anabaena circinalis Rab. (H1), respectively. Vertical and horizontal gradients of analyzed abiotic variables and phytoplankton biomass were observed. Considering the phytoplankton biomass values, both reservoirs were oligotrophic for the duration of the study. The Canonical Correspondence Analysis (CCA) evidenced temporal and spatial gradients of phytoplankton biomass; nevertheless, it did not follow the classic model proposed for deep reservoirs, since higher biomass was registered in the lacustrine zone during some months and in fluvial zones during other months. Distinct functional groups of phytoplankton characterized both studied reservoirs. Capivari Reservoir was best characterized by LM and Y groups, indicative of its greater water column stability and higher phosphorus concentration, whereas Segredo Reservoir was principally characterized by the MP functional group, indicative of its greater mixing zone extension and higher nitrate concentration. The obtained results also evidenced the influence of morphometric conditions and watershed purposes as important structuring factors of phytoplankton biomass in these reservoirs. Handling editor: L. Naselli-Flores  相似文献   

18.
Studies on shallow lakes from the north temperate zone show that they alternate between clear and turbid water states in response to control factors. However, the ecology of semi-arid to arid shallow Mediterranean lakes is less explored. Hydrological effects (e.g. water level fluctuations, water residence time) on major ions and nutrient dynamics and processes, and ecology of submerged macrophytes appear to have a crucial role for food webs in shallow Mediterranean lakes. Nutrient control may be of greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes. This will be relevant for the implementation of the European Water Framework Directive, and conservation and management of these ecosystems. Strong trophic cascading effects of fish resulting from dominance of omnivorous and benthivorous fish species, whose diversity is usually high, together with frequent spawning and absence of efficient piscivores, seem to be the reason for the lack of large-bodied grazers that could control phytoplankton. However, such effects may vary within the region depending on fish distribution and community. These factors need elaboration in order to allow shallow lake ecologists and managers to develop better restoration strategies for eutrophicated shallow Mediterranean lakes. Consequently, modifications for the implementation of the European Water Framework Directive for determining ecological status in shallow Mediterranean lakes appear to be necessary. Furthermore, the implications of climate warming may be even more challenging than in high latitude lakes since shallow lakes in the Mediterranean region are among the most sensitive to extreme climate changes. There is an urgent need for data on the ecology of shallow lakes in the region. An appeal is made for international cooperation, development of large-scale research and information exchange to facilitate this and a web-based discussion list has been implemented.  相似文献   

19.
Seawater samples were collected biweekly from the northern Gulf of Aqaba, Red Sea, for Phytoplankton analysis during the period May 1998 to October 1999. Microscopic counts and HPLC methods were employed. Procaryotic and eucaryotic ultraplankton dominated throughout most of the year, with larger nano- and microplankton making up only 5% of the photosynthetic biomass. Moderate seasonal variations in the 0–125 m integrated Chl a contrasted with a pronounced seasonal succession of the major taxonomic groups, reflecting the changes in the density stratification of the water column: Prochlorococcus dominated during the stratified summer period and were almost absent in winter. Chlorophyceae and Cryptophyceae were dominant during winter mixing but scarce or absent during summer. Diatoms and Synechococcus showed sharp and moderate biomass peaks in late winter and spring respectively, but remained at only low Chl a levels for the rest of the year. Chrysophyceae, Prymnesiophyceae and the scarce Dinophyceae showed no clear seasonal distribution pattern. The implications of alternating procaryotic and eucaryote dominated algal communities for the Red Sea pelagic food web are discussed. Electronic Supplementary Material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
1. Running waters, including associated riparian areas, are embraced by international legal frameworks outlining targets for the preservation, protection and improvement of the quality of the environment. Interactions between stream and river processes and riparian habitats have not received much attention in the management of stream ecosystems, and integrated measures that consider both the ecological status of streams and rivers (sensu EU Water Framework Directive, WFD) and the conservation status of riparian habitats and species (sensu EU Habitats Directive, HD) are rare. 2. Here, we analysed the influence of stream size, morphology and chemical water characteristics for the distribution of water‐dependent terrestrial habitat types, i.e. alkaline fens, periodically inundated meadows and meadows in riparian areas in Denmark using an extensive data set covering a total of 254 stream reaches. A species‐based classification model was used to translate species lists into a standardised interpretation of habitat types protected by the HD in Denmark. 3. No size dependency was found regarding the distribution of fen and meadow vegetation. Instead, the distribution of fen and meadow vegetation was strongly affected by the morphology of the streams. Alkaline fens, periodically inundated meadows and meadows occurred six, five and four times, respectively, less frequently along channelised compared with natural stream reaches. Our results indicate that stream channelisation strongly interfered with the natural hydrology of riparian areas, affecting conditions needed to sustain protected fen and meadow communities. 4. We also found that water chemistry strongly influenced the occurrence of fen and meadow vegetation in riparian areas. The probability of finding fen and meadow vegetation was reduced when total phosphorus (TP) concentration exceeded 40–50 μg P L?1, whereas meadow vegetation responded less strongly to TP. 5. Our findings highlight the importance of restoring hydrology of riparian areas to improve conditions for fen and meadow vegetation, but also that the water chemistry should be considered when measures that increase hydrological connectivity result in an increase in the probability of flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号