首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matute DR 《Current biology : CB》2010,20(24):2229-2233
Reinforcement, the strengthening of prezygotic reproductive isolation by natural selection in response to maladaptive hybridization [1-3], is one of the few processes in which natural selection directly favors the evolution of species as discrete groups (e.g., [4-7]). The evolution of reproductive barriers via reinforcement is expected to evolve in regions where the ranges of two species overlap and hybridize as an evolutionary solution to avoiding the costs of maladaptive hybridization [2,3,8]. The role of reinforcement in speciation has, however, been highly controversial because population-genetic theory suggests that the process is severely impeded by both hybridization [8-11] and migration of individuals from outside the contact zone [12,13]. To determine whether reinforcement could strengthen the reproductive barriers between two sister species of Drosophila in the face of these impediments, I initiated experimental populations of these two species that allowed different degrees of hybridization, as well as migration from outside populations. Surprisingly, even in the face of gene flow, reinforcement could promote the evolution of reproductive isolation within only five generations. As theory predicts, high levels of hybridization (and/or strong selection against hybrids) and migration impeded this evolution. These results suggest that reinforcement can help complete the process of speciation.  相似文献   

2.
The usual assumption that species have evolved from a common ancestor by a simple branching process--where each branch is genetically isolated--has been challenged by the observation of frequent hybridization between species in natural populations. In fact, most plant species are thought to have hybrid origins. This reticulate pattern of species evolution has posed problems in the definition of speciation and in phylogenetic reconstruction, especially when molecular data are used. As a result, hybridization has been largely treated as an evolutionary accident or statistical error in phylogenetic analysis. In this paper, I explicitly incorporate hybridization as an evolutionary occurrence and then conduct phylogenetic reconstruction. I first examine the reticulate evolution under a pure drift model, and then extend the theory to fit a mutation model. A least-squares method is developed for reconstructing a reticulate phylogeny using gene frequency data. The efficacy of the method under the pure drift model is verified via Monte Carlo simulations.  相似文献   

3.
Abstract How do species that interbreed become reproductively isolated? If hybrids are less fit than parental types, natural selection should promote reproductive isolation by favoring the evolution of premating mechanisms that prevent hybridization (a process termed reinforcement). Although reinforcement should generate a decline in hybridization over time, countervailing forces of gene flow and recombination are thought to preclude natural selection from enhancing and finalizing reproductive isolation. Here, I present recent estimates of hybridization frequency between two species of spadefoot toad, Spea multiplicata and S. bombifrons. I compare these recent measures of hybrid frequency with previously published estimates and show that hybridization between these species has declined precipitously over the past 27 years. Although previous studies suggest that reinforcement possibly accounts for this decline in hybrids over time, three alternative hypotheses also can explain the observed decrease in hybridization. First, if one of the two interacting species becomes rare, opportunities for and incidence of hybridization may decrease. Second, if one of the two interacting species is initially rare, hybridization may be initially common if the rare species has difficulty locating conspecific mates. Third, if hybrids are produced only in particular environments, hybrid frequency may decline if habitat changes result in loss of those environments that promote hybrid formation. I found no support for these three alternative explanations of the decline in hybrids. Instead, reinforcement appears to best account for the evolution of enhanced reproductive isolation between these species. Moreover, the finding that hybridization declined precipitously in only 27 years suggests that many systems that have undergone reinforcement may be overlooked because reproductive isolation between the interacting populations or species may already be complete.  相似文献   

4.
Introgressive hybridization is one of the major threats to species conservation, and is often induced by human influence on the natural habitat of wildlife species. The ability to accurately identify introgression is critical to understanding its importance in evolution and effective conservation management of species. Hybridization between North American bison (Bison bison) and domestic cattle (Bos taurus) as a result of human activities has been recorded for over 100 years, and domestic cattle mitochondrial DNA was previously detected in bison populations. In this study, linked microsatellite markers were used to identify domestic cattle chromosomal segments in 14 genomic regions from 14 bison populations. Cattle nuclear introgression was identified in five populations, with an average frequency per population ranging from 0.56% to 1.80%. This study represents the first use of linked molecular markers to examine introgression between mammalian species and the first demonstration of domestic cattle nuclear introgression in bison. To date, six public bison populations have been identified with no evidence of mitochondrial or nuclear domestic cattle introgression, providing information critical to the future management of bison genetic resources. The ability to identify even low levels of introgression resulting from historic hybridization events suggests that the use of linked molecular markers to identify introgression is a significant development in the study of introgressive hybridization across a broad range of taxa.  相似文献   

5.
BACKGROUND: This paper summarizes the main results obtained on Trypanosoma cruzi genetic diversity and population structure since this parasite became the theme of many genetic and molecular studies in the early seventies. RESULTS: T. cruzi exibits a paradigmatic pattern of long-term, clonal evolution, which has structured its natural populations into several discrete genetic subdivisions or "Discrete Typing Units" (DTU). Rare hybridization events are nevertheless detectable in natural populations and have been recently obtained in the laboratory. CONCLUSIONS: The DTUs and natural clones of T. cruzi constitute relevant units for molecular epidemiology and experimental evolution. Experimental mating opens the way to an in-depth knowledge of this parasite's formal genetics.  相似文献   

6.
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

7.
Knowledge of cross-transmission and hybridization between parasites of humans and reservoir hosts is critical for understanding the evolution of the parasite and for implementing control programmes. There is now a consensus that populations of pig and human Ascaris (roundworms) show significant genetic subdivision. However, it is unclear whether this has resulted from a single or multiple host shift(s). Furthermore, previous molecular data have not been sufficient to determine whether sympatric populations of human and pig Ascaris can exchange genes. To disentangle patterns of host colonization and hybridization, we used 23 microsatellite loci to conduct Bayesian clustering analyses of individual worms collected from pigs and humans. We observed strong differentiation between populations which was primarily driven by geography, with secondary differentiation resulting from host affiliation within locations. This pattern is consistent with multiple host colonization events. However, there is low support for the short internal branches of the dendrograms. In part, the relationships among clusters may result from current hybridization among sympatric human and pig roundworms. Indeed, congruence in three Bayesian methods indicated that 4 and 7% of roundworms sampled from Guatemala and China, respectively, were hybrids. These results indicate that there is contemporary cross-transmission between populations of human and pig Ascaris.  相似文献   

8.
Randi E 《Molecular ecology》2010,19(20):4386-4388
Empirical studies demonstrate that natural hybridization in animals is more common than thought so far ( Mallet 2005 ), particularly among species that originated recently through cycles of population contraction–expansion arising from climate changes over the last glacial period, the Pleistocene. In addition, the post‐glacial global growth of human populations has fostered anthropogenic hybridization events, mediated by habitat changes, the persecution of large predators and the introduction of alien species ( Allendorf et al. 2001 ). The Canis lineage shows cases of both natural and anthropogenic hybridization, exacerbating the controversy about the number of species that should be formally validated in the taxonomic lists, the evolutionary role of genetic introgression and the ways to manage hybrids with invading wild or domesticated populations. The study by Wheeldon et al. (2010) , published in this issue of Molecular Ecology, adds a new piece to the intricate puzzle of evolution and taxonomy of Canis in North America. They show that sympatric wolves (C. lupus) and coyotes (C. latrans) are not (extensively) hybridizing in the western North American Great Lakes region (GLR). Widespread hybridization between coyotes and a genetically distinct, but closely related, wolf‐like population (the eastern wolf) occurred in the northeastern regions of North America. In Wheeldon et al.’s (2010) opinion, these data should prove definitely that two different species of wolf (the western gray wolf C. lupus and the eastern wolf C. lycaon) and their hybrids are distributed across the GLR.  相似文献   

9.
This review deals with natural hybridization, an important subject in conservation biology. Natural hybridization is defined as the secondary contact between two populations that have evolved separately over a long period of time. This process is uncommon in terms of the total number of individuals involved, but is much less unusual if we consider the number of species that hybridize. Thus, natural hybridization may be an important process in the shaping of the evolutionary trajectories of many plant and animal species. The possible consequences of natural hybridization, which can either promote or prevent evolutionary divergence between taxa and will involve many ecological factors, are analysed here. I question whether natural hybridization poses always a problem in conservation and try to answer when conservation biologists and managers do have a responsibility to take decisions. Several examples of hybridization related to management strategies are also discussed. In conclusion, I believe that it is impossible to provide conservation managers with a simple handbook explaining how to proceed in cases of hybridization––each case is unique and should be analyzed individually. The only advice is that the more we know about hybridization and the factors involved, the better we will be able to assess each situation, to establish the possible consequences and even to estimate the probability of success of any particular conservation strategy.  相似文献   

10.
Genetic variation associated with the natural hybridization of Iris fulva and I. hexagona was investigated to test for the occurrence of introgression. These species have been viewed as a classic example of the process of introgressive hybridization (Anderson, 1949). However, more recent studies have concluded that there has not been an exchange of genetic material between I. fulva and I. hexagona (Randolph et al., 1967). Our analysis has involved the examination of both allopatric and parapatric populations of I. fulva and I. hexagona with reference to diagnostic ribosomal DNA markers. The pattern of variation in the parapatric population indicates the presence of the repeated backcrossing necessary to the process of introgressive hybridization. Indeed, in the region of parapatry, we suggest that localized introgression of ribosomal sequences has occurred into both I. fulva and I. hexagona. Significantly, we have also detected the presence of the diagnostic ribosomal markers from each species in allopatric populations of the alternate species. Our findings suggest that not only is introgressive hybridization presently occurring in parapatry between I. fulva and I. hexagona, but that past hybridization between these species has resulted in introgression into areas of allopatry.  相似文献   

11.
In this study I have examined the patterns of morphological and genetic differentiation between two species of the Andean genus Schizanthus that differ in their pollination and mating systems. Schizanthus hookeri has a bee pollination syndrome and is strongly dependent on pollinators for seed set. In contrast, S.?grahamii has a hummingbird pollination syndrome and exhibits late autonomous selfing. Southern populations of the latter species have red flowers (reddish morph), while northern populations have yellow (yellowish morph) or pink flowers (pinkish morph). I used two noncoding chloroplast DNA (cpDNA) regions to investigate the genetic affinities between S.?hookeri and the three morphs of S.?grahamii. I also performed intra- and interspecific crosses to assess whether gene flow between species was possible. Phylogenetic analyses supported the existence of two differentiated clades that did not match currently accepted taxonomic classification. Accordingly, genetic distance did not correlate significantly with morphological distance. No fruits were produced from interspecific crosses, and there were no individuals with intermediate morphology that could indicate current and frequent hybridization events between species.?I propose that the discordance between cpDNA data and conventional taxonomy could be explained by parallel evolution, or alternatively, by a very sporadic hybridization.  相似文献   

12.
Enhanced prezygotic isolation in sympatry is one of the most intriguing patterns in evolutionary biology and has frequently been interpreted as evidence for reinforcement. However, the frequency with which reinforcement actually completes speciation remains unclear. The Jewelwing damselflies (Calopteryx aequabilis and C. maculata) have served as one of the few classic examples of speciation via reinforcement outside of Drosophila. Although evidence for wing pattern displacement and increased mate discrimination in this system have been demonstrated, the degree of hybridization and gene flow in nature are unknown. Here, we show that sympatric populations of these two species are the result of recent secondary contact, as predicted under a model of speciation via reinforcement. However, we found no phenotypic evidence of hybridization in natural populations and a complete association between species-specific haplotypes at two different loci (mitochondrial CO I and nuclear EF1-alpha), suggesting little or no contemporary gene flow. Moreover, genealogical and coalescent-based estimates of divergence times and migration rates indicate that, speciation occurred in the distant past. The rapid evolution of wing colour in sympatry is recent, therefore, relative to speciation and seems to be better explained by selection against wasting mating effort and/or interspecific aggression resulting from a 'noisy neighbour' signalling environment.  相似文献   

13.
Noncoding DNA sequences (NCS) have attracted much attention recently due to their functional potentials. Here we attempted to reveal the functional roles of noncoding sequences from the point of view of natural selection that typically indicates the functional potentials of certain genomic elements. We analyzed nearly 37 million single nucleotide polymorphisms (SNPs) of Phase I data of the 1000 Genomes Project. We estimated a series of key parameters of population genetics and molecular evolution to characterize sequence variations of the noncoding genome within and between populations, and identified the natural selection footprints in NCS in worldwide human populations. Our results showed that purifying selection is prevalent and there is substantial constraint of variations in NCS, while positive selectionis more likely to be specific to some particular genomic regions and regional populations. Intriguingly, we observed larger fraction of non-conserved NCS variants with lower derived allele frequency in the genome, indicating possible functional gain of non-conserved NCS. Notably, NCS elements are enriched for potentially functional markers such as eQTLs, TF motif, and DNase I footprints in the genome. More interestingly, some NCS variants associated with diseases such as Alzheimer''s disease, Type 1 diabetes, and immune-related bowel disorder (IBD) showed signatures of positive selection, although the majority of NCS variants, reported as risk alleles by genome-wide association studies, showed signatures of negative selection. Our analyses provided compelling evidence of natural selection forces on noncoding sequences in the human genome and advanced our understanding of their functional potentials that play important roles in disease etiology and human evolution.  相似文献   

14.
Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin's publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotype × environment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a 'model system' for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes.  相似文献   

15.
Oceanic islands have long been called natural laboratories for studying evolution because they are geologically young, isolated, dynamic areas with diverse habitats over small spatial scales. Volcanic substrates of different ages permit the study of different stages of divergence and speciation within plant lineages. In addition to divergence, the dynamic island setting is conducive to hybridization. Discussion will focus on the potential of systematic/ecological studies, in combination with genomic data from high throughput sequencing and an ever‐increasing array of analytical techniques, for studying evolution in island plants. These studies may include: generation of highly resolved phylogenies to clarify the biogeography of speciation and whether divergence has occurred with or without gene flow; identification of the barriers to gene flow (extrinsic vs. intrinsic) of importance during divergence; documentation of historical and current hybridization events within island lineages; and elucidation of the genomic composition and ecology of hybrid populations in order to infer the evolutionary consequences of hybridization, such as the origin of stabilized homoploid hybrid species.  相似文献   

16.
Myers EM  Frankino WA 《PloS one》2012,7(2):e31759
Disadvantageous hybridization favors the evolution of prezygotic isolating behaviors, generating a geographic pattern of interspecific mate discrimination where members of different species drawn from sympatric populations exhibit stronger preference for members of their own species than do individuals drawn from allopatric populations. Geographic shifts in species' boundaries can relax local selection against hybridization; under such scenarios the fate of enhanced species preference is unknown. Lineages established from populations in the region of sympatry that have been maintained as single-species laboratory cultures represent cases where allopatry has been produced experimentally. Using such cultures dating from the 1950s, we assess how Drosophila pseudoobscura and D. persimilis mate preferences respond to relaxed natural selection against hybridization. We found that the propensity to hybridize generally declines with increasing time in experimental allopatry, suggesting that maintaining enhanced preference for conspecifics may be costly. However, our data also suggest a strong role for drift in determining mating preferences once secondary allopatry has been established. Finally, we discuss the interplay between populations in establishing the presence or absence of patterns consistent with reinforcement.  相似文献   

17.
European wildcat (Felis silvestris silvestris) populations are fragmented throughout most of the whole range of the subspecies and may be threatened by hybridization with the domestic cat F.s. catus. The underlying ecological processes promoting hybridization remain largely unknown. In France, wildcats are mainly present in the northeast and signs of their presence in the Pyrenees have been recently provided. However, no studies have been carried out in the French Pyrenees to assess their exposure to hybridization. We compared two local populations of wildcats, one living in a continuous forest habitat in the French Pyrenees, the other living in a highly fragmented forest‐agricultural landscape in northeastern France to get insights into the variability of hybridization rates. Strong evidence of hybridization was detected in northeastern France and not in the Pyrenees. Close kin in the Pyrenees were not found in the same geographic location contrary to what was previously reported for females in the northeastern wildcat population. The two wildcat populations were significantly differentiated (FST = 0.072) to an extent close to what has been reported (FST = 0.103) between the Iberian population, from which the Pyrenean population may originate, and the German population, which is connected to the northeastern population. The genetic diversity of the Pyrenean wildcats was lower than that of northeastern wildcat populations in France and in other parts of Europe. The lower hybridization in the Pyrenees may result from the continuity of natural forest habitats. Further investigations should focus on linking landscape features to hybridization rates working on local populations.  相似文献   

18.
19.
Reinforcement, a process by which natural selection increases reproductive isolation between populations, has been suggested to be an important force in the formation of new species. However, all existing cases of reinforcement involve an increase in mate discrimination between species. Here, I report the first case of reinforcement of postmating prezygotic isolation (i.e., barriers that act after mating but before fertilization) in animals. On the slopes of the African island of São Tomé, Drosophila yakuba and its endemic sister species D. santomea hybridize within a well-demarcated hybrid zone. I find that D. yakuba females from within this zone, but not from outside it, show an increase in gametic isolation from males of D. santomea, an apparent result of natural selection acting to reduce maladaptive hybridization between species. To determine whether such a barrier could evolve under laboratory conditions, I exposed D. yakuba lines derived from allopatric populations to experimental sympatry with D. santomea, and found that both behavioral and gametic isolation become stronger after only four generations. Reinforcement thus appears to be the best explanation for the heightened gametic isolation seen in sympatry. This appears to be the first example in animals in which natural selection has promoted the evolution of stronger interspecific genetic barriers that act after mating but before fertilization. This suggests that many other genetic barriers between species have been increased by natural selection but have been overlooked because they are difficult to study.  相似文献   

20.
The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Calvià (Majorca, Balearic Islands, Spain). This population, like others founded in Europe, is characterized by the presence of 2 very common (>95%) mitochondrial haplotypes (named I and II) and rare and endemic haplotypes that appear at very low frequencies. Four experimental populations were established with flies having a heterogeneous nuclear genetic background, which was representative of the composition of the natural population. The populations were started with haplotypes I and II at an initial frequency of 50% each. After 33 generations, the 2 haplotypes coexisted. Random drift could be rejected as the only force responsible for the observed changes in haplotype frequencies. A slight but significant linear trend favouring a mtDNA (haploid) fitness effect has been detected, with a nonlinear deviation that could be due to a nuclear component. An analysis of chromosomal arrangements was made before the foundations of the cages and at generation 23. Our results indicated that the hypothesis that the maintenance of the frequencies of haplotypes I and II in natural populations could be due to their association with chromosomal arrangements remains controversial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号