首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that larval skin (LS) grafts are rejected by an inbred strain of adult Xenopus, which suggests a mechanism of metamorphosis by which larval cells are recognized and attacked by the newly differentiating immune system, including T lymphocytes. In an attempt to define the larval antigenic molecules that are targeted by the adult immune system, anti-LS antibodies (IgY) were produced by immunizing adult frogs with syngeneic LS grafts. The antigen molecules that reacted specifically with this anti-LS antiserum were localized only in the larval epidermal cells. Of 53 and 59-60 kDa acidic proteins that were reactive with anti-LS antibodies, a protein of 59 kDa and with an isoelectric point of 4.5 was selected for determination of a 19 amino acid sequence (larval peptide). The rat antiserum raised against this peptide was specifically reactive with the 59 kDa molecules of LS lysates. Immunofluorescence studies using these antisera revealed that the larval-specific molecules were localized in both the tail and trunk epidermis of premetamorphic larvae, but were reduced in the trunk regions during metamorphosis, and at the climax stage of metamorphosis were detected only in the regressing tail epidermis. Culture of splenocytes from LS-immunized adult frogs in the presence of larval peptide induced augmented proliferative responses. Cultures of larval tail pieces in T cell-enriched splenocytes from normal frogs or in natural killer (NK)-cell-enriched splenocytes from early thymectomized frogs both resulted in significant destruction of tail pieces. Tissue destruction in the latter was enhanced when anti-LS antiserum was added to the culture. These results indicate that degeneration of tail tissues during metamorphosis is induced by a mechanism such that the larval-specific antigen molecules expressed in the tail epidermis are recognized as foreign by the newly developing adult immune system, and destroyed by cytotoxic T lymphocytes and/or NK cells.  相似文献   

2.
The conversion of the larval to adult epidermis during metamorphosis of tadpoles of bullfrog, Rana catesbeiana, was investigated utilizing newly cloned Rana keratin cDNAs as probes. Rana larval keratin (RLK) cDNA (rlk) was cloned using highly specific antisera against Xenopus larval keratin (XLK). Tail skin proteins of bullfrog tadpoles were separated by 2-dimensional gel electrophoresis and subjected to Western blot analysis with anti-XLK antisera. The Rana antigen detected by this method was sequenced and identified as a type II keratin. We cloned rlk from tadpole skin by PCR utilizing primers designed from these peptide sequences of RLK. RLK predicted by nucleotide sequences of rlk was a 549 amino acid -long type II keratin. Subtractive cloning between the body and the tail skin of bullfrog tadpole yielded a cDNA (rak) of Rana adult keratin (RAK). RAK was a 433 amino acid-long type I keratin. We also cloned a Rana keratin 8 (RK8) cDNA (rk8) from bullfrog tadpole epidermis. RK8 was 502 amino acid-long and homologous to cytokeratin 8. Northern blot analyses and in situ hybridization experiments showed that rlk was actively expressed through prometamorphosis in larva-specific epidermal cells called skein cells and became completely inactive at the climax stage of metamorphosis and in the adult skin. RAK mRNA was expressed in basal cells of the tadpole epidermis and germinative cells in the adult epidermis. The expression of rlk and rak was down- and up-regulated by thyroid hormone (TH), respectively. In contrast, there was no change in the expression of RK8 during spontaneous and TH-induced metamorphosis. RK8 mRNA was exclusively expressed in apical cells of the larval epidermis. These patterns of keratin gene expression indicated that the expression of keratin genes is differently regulated by TH depending on the type of larval epidermal cells. The present study demonstrated the usefulness of these genes for the study of molecular mechanism of postembryonic epidermal development and differentiation.  相似文献   

3.
The anuran remodels the larval epidermis into the adult one during metamorphosis. Larval and adult epidermal cells of the bullfrog were characterized by determining the presence of huge cytoplasmic keratin bundles and the expression profiles of specific marker genes, namely colalpha1 (collagen alpha1 (I)), rlk (larval keratin) and rak (adult keratin). We identified four types of epidermal basal cells: (i) basal skein cells that have keratin bundles and express colalpha1 and rlk; (ii) rak+-basal skein cells that have keratin bundles and express colalpha1, rlk, and rak; (iii) larval basal cells that express rlk and rak; and (iv) adult basal cells that express rak. These traits suggested that these basal cells are on the same lineage in which basal skein cells are the original progenitor cells that consecutively differentiate into rak+-basal skein cells into larval basal cells, and finally into adult basal cells. To directly verify the differentiation potential of larval basal cells into adult ones, the mono-layered epidermis composed of larval basal cells was cultured in the presence of aldosterone and thyroid hormone. In this culture, larval basal cells differentiated into adult basal cells that reconstituted the adult epidermis. Thus, it was concluded that larval basal cells are the direct progenitor cells of the adult epidermal stem cells.  相似文献   

4.
Results from previous studies using an inbred strain of Xenopus laevis have led to the proposition that metamorphosis includes the events by which the newly differentiating adult immune system, including T lymphocytes, recognizes and eliminates larval skin cells as 'non-self'. More recently, a larval antigen targeted by adult T cells was identified as a 59 kDa protein with a specific peptide sequence. Using antisera directed against the larval antigen and the peptide, immunohistochemistry and western blotting were done to examine expression of the 59 kDa larval antigen in the skin during larval and metamorphic periods. There was no expression before Nieuwkoop and Faber stage 53. Expression was first seen at the beginning of metamorphic stage 54, when hind limbs appear, and increased thereafter, in apical and skein cells of both trunk and tail regions. In the trunk region, expression started to decrease at stage 58, until it completely disappeared at stage 62 (metamorphic climax). In the tail skin, however, expression persisted throughout the metamorphic stages. Treatment of larvae with thyroid hormone (TH) resulted in repression of expression of the 59 kDa molecule in a dose-dependent manner. Downregulation occurred earlier in the trunk than in the tail skin. These results suggest involvement in metamorphic events of an immunological mechanism: differential expression of the larval antigen in the trunk and tail skin cells due to their differing concentration of TH results in the tail, but not the trunk skin, being selectively attacked by the newly differentiating adult-type immune system.  相似文献   

5.
An alloantiserum produced against Xenopus MHC class I antigens has been used to distinguish different erythrocyte populations at metamorphosis. By analysis using a fluorescence-activated cell sorter (FACS) analyzer, tadpole (stage 55) and adult erythrocytes have distinct volume differences and tadpole cells have no MHC antigens on the cell surface. Both tadpole and adult erythrocytes express a "mature erythrocyte" antigen marker, recognized by its monoclonal antibody (F1F6). During metamorphosis, immature erythrocytes, at various stages of differentiation, which express adult levels of cell-surface MHC antigens by 12 days after tail resorption, are found in the bloodstream. These immature cells are biosynthetically active, produce adult hemoglobin, and mature by 60 days after the completion of metamorphosis. Percoll gradient-density fractionation has shown that all of the cells in the new erythrocyte series express adult levels of MHC antigens but there is only a gradual increase in the amount of "mature erythrocyte" antigen. Tadpole erythrocytes, which are biosynthetically active during larval stages, produce small amounts of surface MHC antigens before the metamorphic climax and then become metabolically inactive. They are completely cleared from the circulation by 60 days after metamorphosis. Erythrocytes from tadpoles arrested in their development for long periods of time express intermediate levels of MHC antigens, suggesting a "leaky" expression of these molecules in the tadpole cells. The most abundant erythrocyte cell-surface proteins from tadpoles and adults, as judged by two-dimensional gel electrophoresis, are very different.  相似文献   

6.
Anuran larval skin undergoes a process of metamorphosis into pre-adult and adult skin. Basal skein, larval basal and adult basal cells are basement membrane-attaching cells in the larval, pre-adult and adult epidermis, respectively, and are identified as cells expressing genes of RLK (Rana larval keratin), both RLK and RAK (Rana adult keratin), and RAK. Larval to pre-adult skin conversion takes place in the histological entity called the skin transformation center (STC). The present study performed a cDNA subtractive gene screening on cDNA of the larval and the pre-adult skin, and cloned the secreted protein acidic and rich in cysteine (SPARC) gene as an upregulated gene in the larva to pre-adult skin conversion. RAK gene-positive basal skein cells and fibroblasts in and around the STC were weakly and strongly sparc-positive, respectively. Using sparc and rak, we redefined the STC and visualized it on a histological section as an approximately 150 microm-long region that contained about 20 rak-negative and weakly sparc-positive basal cells. Intense sparc expression was observed in basal skein cells, but not in larval basal cells, suggesting that SPARC acts as a suppressor of rak during epidermal differentiation. This suggestion was tested by investigating the effect of SPARC on cultured larval basal cells. We observed that SPARC suppressed the expression of rak, but not rlk.  相似文献   

7.
Triiodothyronin (T3) is known to induce amphibian metamorphosis but other hormones such as glucocorticoids accelerate T3 action. The increase in plasma concentration of both T3 and glucocorticoids during metamorphic climax is correlated with the transformation of the epidermis from larval type (uncornified) to adult type (cornified). Previously we have shown that T3 induced adult-type 63 Kd keratin gene expression and cornification of the larval epidermis. In this study, we have examined the effects of T3 and hydrocortisone (HC) on the conversion of larval to adult epidermal cells in vitro. When larval epidermal cells were treated with both T3 and HC, they had a synergistic effect on adult-type keratin synthesis (both 63 Kd and 49 Kd keratins) and epidermal cornification. The synergistic effect between T3 and HC required a pretreatment with T3 for 3 days. During this time, addition of HC to cultures containing T3 did not change the amount of 63 Kd keratin mRNA. Thus, HC did not reduce the lag time for epidermal cells to respond to T3. After 4 days of hormone treatment, T3 increased the amount of 63 Kd keratin mRNA 9-fold while T3 and HC induced it 18-fold. When cultures were pretreated with T3 for 3 days, a 1 day treatment with HC was sufficient to obtain the synergistic effect. Thus the induction of 63 Kd keratin gene expression by T3 required a much longer lag (3 days) than the lag required for the synergistic action of T3 and HC (less than 1 day).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Polyclonal antibodies were raised against Xenopus larva-specific 58 kDa keratin (PAK58) and adult-specific 63 kDa keratin (PAK63), in order to examine the origin of 63 kDa-keratin-producing cells in the tail skin. By immunofluorescent staining of the tail skin, the 58 kDa keratin was recognized in almost all of the larval epidermal cells, although a small number of PAK58-negative cells were detected at stage 64. In contrast, 63 kDa keratin was immunohistochemically recognized at stage 58, but the signal was very weak. The number of epidermal layers in the tail epidermis increased during a period from stage 58 to stage 64. At stage 64, a small number of PAK63-positive cells was clearly identified in the multilayered tail epidermis. Comparative analysis of successive sections showed that PAK63-positive cells are derived from a cell group differing from PAK58-positive cells. Immunohistochemical studies using cultured epidermal cells demonstrated that 58 kDa keratin is localized in the cytoskeletal bundles of skein cells, whereas 63 kDa keratin is produced not by skein cells but by basal cells and their descendants. These results suggest that basal cells are the adult precursor cells within the larval epidermis even in the tail area.  相似文献   

9.
The conversion of hemoglobins (Hbs) and red blood cells (RBCs) from the larval to the adult type was monitored during normal metamorphosis in Xenopus laevis, and in artificially induced metamorphosis-arrested and precociously metamorphosed animals by means of SDS-PAGE, Hb immunohistochemistry, and double-staining with in situ DNA nick-end labeling (TUNEL) for detection of apoptosis and Hb immunostain. During normal metamorphosis, larval RBCs gradually decreased and, conversely, adult RBCs increased in number. However, in metamorphosis-arrested tadpoles, the larval-adult conversion of RBCs did not occur within 4 weeks, but did rather within 6 months after the controls metamorphosed. In order to identify possible mechanisms for the specific removal of larval RBCs from circulation in metamorphosing and metamorphosed animals, double-staining experiments with TUNEL and Hb immunostain were carried out. During metamorphic climax, many larval RBCs expressed TUNEL-positive reactions in the spleen, suggesting that the larval RBCs were specifically removed from the spleen during metamorphosis. When the larval RBCs were transferred to the circulatory system of histocompatible control adults, they survived for a long time, and no transferred RBCs showed TUNEL-positive reactions. In contrast, larval RBCs transferred to histocompatible adults that had been treated with T3 were reduced in number in the circulatory system of the recipients. Double-staining experiments demonstrated that the transferred larval RBCs underwent apoptosis in the spleen and liver of the adult recipients treated with T3, indicating that the mature larval-type RBCs were specifically removed from metamorphosing animals by apoptotic cell death under the influence of THs.  相似文献   

10.
The skin of an adult frog of Xenopus laevis was characterized by the reactivity of 20 lectins. The lectins were classified into six groups in their binding to the epidermal cells: Lycopersicon esculentum lectin (LEL)-type which was positive for all epidermal cells; Pisum sativum agglutinin (PSA)-type for stratum germinativum; succinylated wheat germ agglutinin (sWGA)-type for strata spinosum, granulosum and corneum; Dolichos biflorus agglutinin (DBA)-type for strata germinativum and spinosum; peanut agglutinin (PNA)-type for stratum spinosum; and Ulex europaeus agglutinin (UEA-I)-type for strata granulosum and corneum. PSA and sWGA were utilized as markers of mitotically active germinative cells and the differentiated cells of the epidermis, respectively, to describe the metamorphic conversion of larval epidermal cells to adult type. PSA stained all epidermal cells of tadpoles before metamorphic climax. At the end of metamorphosis, PSA-positive cells were restricted to cells in the basal layer of body epidermis while all the tail epidermis remained PSA-positive. The other cell marker, sWGA, only stained apical cells in tadpole epidermis. During the metamorphic climax, sWGA-positive cells appeared in the cells beneath the stratum corneum of the body region, but not in the tail region. The present study demonstrates that PSA and sWGA are useful to investigate metamorphic changes in tadpole epidermal cells.  相似文献   

11.
Summary Methods for the isolation and in vitro culture of larval and adultXenopus laevis epidermal cells have been developed. Epidermal cells of stage 52–54 tadpoles and adult epidermal cells were enzymatically dissociated and purified (98%) by Percoll-density centrifugation and unit-gravity sedimentation. Both cell types attached on fibronectin-coated dishes and proliferated for 1 wk when the proper medium was used. There were four significant differences between larval and adult cells: a) Adult cells had a greater buoyant density than larval cells. b) Keratin synthesis patterns were markedly different. c) A combination of medium F12 and Eagle's minimum essential medium was optimal for growth of larval cells whereas MCDB151 medium was optimal for adult cells. d) Adult cells needed fetal bovine serum (>5%) whereas larval cells grew without fetal bovine serum. In contrast to these differences, larval and adult cells had two similar properties: a) Insulin had a potent effect on the growth of both cells, and b) The optimal Ca++ concentration for cell growth was quite low for both cell types; 0,1 mM for larval cells and below 0.05 mM for adult cells. These results suggest that low Ca++ levels are essential for both cornifying (adult) and uncornifying (larval) amphibian keratinocytes. The culture techniques described herein for larval and adult epidermal cells provide a new in vitro model for analyzing development of the epidermis during amphibian metamorphosis. This study was supported by grant (HD 24438) from the National Institutes of Health, Bethesda, MD.  相似文献   

12.
H. Fox 《Journal of Zoology》1974,174(2):217-235
The tail epidermis of the larva and the body epidermis of adults of Rana temporaria and Xenopus laevis are described in terms of electron microscopy.
The activity of lysosomes (determined by the localization of acid phosphatase) in relation to autolysis and the process of cellular cornification, is considered during the periods of climactic disappearance of the larval tail and skin sloughing of adults. The results obtained generally correspond for both genera.
Larval tail epidermal cells completely disappear at metamorphic climax; those of the adult, which are shed, are replaced throughout life after each periodic sloughing. Nevertheless the mechanisms of their epidermal cell loss are comparable, though the level of lysosomal activity in larval tail epidermal cells is higher than in the adult body epidermis. This higher activity of lysosomal enzymes may facilitate the heavy necrosis which ensues in the larval tail at metamorphic climax.  相似文献   

13.
The expression of epidermal antigens in Xenopus laevis   总被引:7,自引:0,他引:7  
Five kinds of monoclonal antibodies that are specific for the epidermis of Xenopus embryos were produced. Epidermis-specific antibodies were used to investigate the spatial and temporal expressions of epidermal antigens during embryonic and larval development. The cells that were recognized by the antibodies at the larval stage are as follows: all of the outer epidermal cells and cement gland cells were recognized by the antibody termed XEPI-1, all of the outer and inner epidermal cells, except the cement gland cells, were recognized by XEPI-2 antibody, the large mucus granules and the apical side of the outer epidermal cells, except for the ciliated epidermal cells, were recognized by XEPI-3 antibody, the large mucus granules and basement membrane were recognized by XEPI-4 antibody, and the small mucus granules contained in the outer epidermal cells as well as extracellular matrices were recognized by the antibody termed XEPI-5. All of the epidermal antigens, except XEPI-4, were first detected in the epidermal region of the late gastrula or early neurula. The XEPI-4 antigen was first detected in stage-26 tail-bud embryos. None of these antigens were expressed by the neural tissues at any time during embryonic development. Only the XEPI-2 antigen continued to be expressed after metamorphosis, while the expression of the other antigens disappeared during or before metamorphosis. The specificity of the antibodies allowed us to classify the epidermal cells into four types in early epidermal development. The four types of epidermal cells are (1) the outer epidermal cells that contain small mucus granules, (2) the ciliated epidermal cells, (3) the outer epidermal cells that contain large mucus granules and (4) the inner sensorial cells.  相似文献   

14.
We investigated the cellular mechanism of formation of subepidermal thick bundles of collagen (collagen lamella) during larval development of the bullfrog, Rana catesbeiana, using cDNA of alpha1(I) collagen as a probe. The originally bilayered larval epidermis contains basal skein cells and apical cells, and the collagen lamella is directly attached to the basement membrane. The basal skein cells above the collagen lamella and fibroblasts beneath it intensively expressed the alpha1(I) gene. As the skin developed, suprabasal skein cells ceased expression of the gene. Concomitantly, the fibroblasts started to outwardly migrate, penetrated into the lamella and formed connective tissue between the epidermis and the lamella. These fibroblasts intensively expressed the gene. As the connective tissue developed, the basal skein cells ceased to express the gene and were replaced by larval basal cells that did not express the gene. These dynamic changes took place first in a lateral region of the body skin and proceeded to all other regions except the tail. Isolated cultured skein cells expressed the gene and extracellularly deposited its protein as the type I collagen fibrils. Thus, it is concluded that anuran larval epidermal cells can autonomously and intrinsically synthesize type I collagen.  相似文献   

15.
Developmental models for skin exist in terrestrial and amphibious vertebrates but there is a lack of information in aquatic vertebrates. We have analysed skin epidermal development of a bony fish (teleost), the most successful group of extant vertebrates. A specific epidermal type I keratin cDNA (hhKer1), which may be a bony-fish-specific adaptation associated with the divergence of skin development (scale formation) compared with other vertebrates, has been cloned and characterized. The expression of hhKer1 and collagen 1α1 in skin taken together with the presence or absence of keratin bundle-like structures have made it possible to distinguish between larval and adult epidermal cells during skin development. The use of a flatfish with a well-defined larval to juvenile transition as a model of skin development has revealed that epidermal larval basal cells differentiate directly to epidermal adult basal cells at the climax of metamorphosis. Moreover, hhKer1 expression is downregulated at the climax of metamorphosis and is inversely correlated with increasing thyroxin levels. We suggest that, whereas early mechanisms of skin development between aquatic and terrestrial vertebrates are conserved, later mechanisms diverge. This work was carried out within the project “Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis” (Q5RS-2002-01192) with financial support from the Commission of the European Communities. It does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by Pluriannual funding to CCMAR by the Portuguese Science and Technology Council. M.A. Campinho was sponsored by the Portuguese Ministry of Science (grant no. SFRH/BD/6133/2001).  相似文献   

16.
Cell proliferation was examined in the back and tail epidermis of larval Xenopus laevis using bromodeoxyuridine (BrdU). The BrdU labeling index of the back epidermis increased temporally at stage 59, followed by a rapid decrease to the same level as at stage 51. The temporal increase in cell proliferation of the back epidermis produced a new epidermal layer composed of basal cells. In vitro analysis showed that tri-iodothyronine (T3) promotes cell proliferation of basal cells but suppresses that of skein cells. Immunohistochemical studies showed that the newly formed basal cell layer functions as adult precursor cells which produce the adult epidermal cells. In contrast to the back epidermis, the labeling index of the tail epidermis decreased from stage 57. However, when the tail skin was transplanted to the back area, cell proliferation in the tail epidermis increased to the same level as that of the normal back epidermis. Cell proliferation of the back epidermis was not suppressed by transplanting the skin to the tail area. These results suggest that some promoting factors are produced in the body region and regulate the number of adult precursor cells, which determine the developmental fate of the larval skin.  相似文献   

17.
In the urodelan amphibian Pleurodeles waltlii, spontaneous anatomical metamorphosis was correlated with an increase in the serum level of thyroxine (T4). It was also accompanied by a change in the myofibrillar ATPase profile of the dorsal skeletal muscle; fibers of larval type were gradually replaced by the adult fiber types I, II A, and II B. Likewise, a myosin isoenzymic transition was observed in dorsal muscle, larval isomyosins were replaced by adult isoforms. In a related species, Ambystoma mexicanum, in which no spontaneous external metamorphosis occurs under standard conditions, the serum T4 level was shown to remain low. During further development, the myofibrillar ATPase profile acquired the adult fiber types, but a high percentage of immature fibers of type II C persisted. Myosin isoenzymic transition was also incomplete; larval isoforms were still distinguished in the neotenic adults. In experimental hypothyroidian P. waltlii, no external metamorphosis occurred; the myofibrillar ATPase profile was of the immature type, and the larval isomyosins persisted. Triiodothyronine induced experimental anatomical metamorphosis in A. mexicanum; only limited changes in the myofibrillar ATPase profile resulted from the treatment, but a complete myosin isoenzymic transition was observed. These results tend to indicate that a moderate increase in the level of thyroid hormone is sufficient to induce the differentiation of adult fiber types, together with the production of adult myosin isoforms in the skeletal dorsal muscle of amphibians, while a pronounced increase would be necessary for repressing the initial larval features.  相似文献   

18.
Summary During anuran metamorphosis dramatic changes in morphogenesis and differentiation of epidermis occur under the influence of thyroid hormones. Modification of ionic calcium concentration also markedly alters the pattern of proliferation and differentiation in amphibian epidermal cells in vitro. The present study was designed to determine the direct effect of low (0.05 mM) and high (0.5mM) calcium (Ca2+) in the absence or presence of thyroxine (10−7 M) on epidermal cells of the body and tail tissue in vitro. When tail fin and body skin explants were maintained in low (0.05 mM) calcium for 48 h, normal ultrastructural morphology and integrity of the cells was observed in both the tissue types. When tissues were exposed to high levels of calcium (0.5mM) in culture medium, tail epidermis showed stratification, and skein cells exhibited apoptosis, both in the presence or absence of thyroid hormones. Under high calcium conditions, the body epidermis showed keratinization of apical cells, apoptosis of skein cells, and increased desmosome formation. These results suggest that (1) optimal Ca2+ concentration for larval epidermal cells is quite low (0.05 mM), (2) high Ca2+ leads to keratinization only in body epidermis, and (3) apoptosis occurred in skein cells of both the tissues at high Ca2+ concentrations (0.5mM). The present study therefore suggests that the extracellular calcium concentration regulates the process of cell death and differentiation inRana catesbeiana larval epidermis, and this effect may be similar to the effect of calcium on mammalian epidermal cells.  相似文献   

19.
Pan-cadherin antibodies recognize the conserved C-terminal region of the family of cell-cell adhesion molecules, cadherins, and have a broad spectrum of reactivity to the molecules. In the present study, by immunohistochemistry using an anti-pan cadherin monoclonal antibody (mAb), expression dynamics of cadherins in epidermal tissues were analyzed during metamorphosis of Xenopus laevis. At early stages of development, the anti-pan cadherin mAb detected signals at cell-cell boundaries and in the cytoplasm of both trunk and tail epidermal cells. During metamorphosis, the immunoreactivity decreased in the trunk skin tissue but remained in the tail. At the climax stage, immunoreactivity was observed only in the regressing tail epidermis. The signals disappeared completely from the trunk epidermis, which had already transformed into adult-type tissue. This observation was confirmed by western blot analysis. A specific band was detected in the larval skin, but not in the adult lysate, at approximately 135 kDa in molecular size, corresponding to the molecular mass of cadherins. This different immunoreactivity in larvae and adults was observed in the epidermis of the skin, but not in any other tissues examined, that is, brain, kidney and liver. The immunoreactivity seen in larval epidermal cells was drastically downregulated by thyroid hormone treatment in vitro. These changes of immunoreactivity were specific for the C-terminal region of cadherins, suggesting intracellular alteration of the molecules during metamorphosis, and the anti-pan cadherin mAb can be a marker for larval-type epidermal cells that is applicable to analysis of Xenopus metamorphosis.  相似文献   

20.

Background

The thyroid hormone (T3)-induced formation of adult intestine during amphibian metamorphosis resembles the maturation of the mammalian intestine during postembryonic development, the period around birth when plasma T3 level peaks. This process involves de novo formation of adult intestinal stem cells as well as the removal of the larval epithelial cells through apoptosis. Earlier studies have revealed a number of cytological and molecular markers for the epithelial cells undergoing different changes during metamorphosis. However, the lack of established double labeling has made it difficult to ascertain the identities of the metamorphosing epithelial cells.

Results

Here, we carried out different double-staining with a number of cytological and molecular markers during T3-induced and natural metamorphosis in Xenopus laevis. Our studies demonstrated conclusively that the clusters of proliferating cells in the epithelium at the climax of metamorphosis are undifferentiated epithelial cells and express the well-known adult intestinal stem cell marker gene Lgr5. We further show that the adult stem cells and apoptotic larval epithelial cells are distinct epithelial cells during metamorphosis.

Conclusions

Our findings suggest that morphologically identical larval epithelial cells choose two alternative paths: programmed cell death or dedifferentiation to form adult stem cells, in response to T3 during metamorphosis with apoptosis occurring prior to the formation of the proliferating adult stem cell clusters (islets).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号