首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular uptake and distribution of cationic liposomes Dc-Chol/DOPECFTR gene complexes were assessed by electronic and confocal laser scanner microscopy (CLSM) for the CFTR gene transfer to human adenocarcinoma and tracheal epithelial cell lines. Cationic lipid forms unilamellar and multilamellar vesicles capable of rapid and efficient transport of gene into target cells. The number of fluorescent complexes was increasing with time in cells up to 6 hours showing a punctate and homogeneous DNA distribution in the cytoplasmatic and nuclear compartments, including the nucleolus. No significant difference in the biochemical and cellular behavior was observed between the investigated system and other systems previously tested. This study adds new insights into the CFTR cationic liposome-mediated gene delivery.  相似文献   

2.
The interaction between the cationic lipid DOTAP and cholesterol is examined in high cholesterol formulations by differential scanning calorimetry (DSC). Preparation of liposomes above 66 mol% cholesterol results in formulations that exhibit a calorimetric transition for anhydrous cholesterol at 38-40 °C. The enthalpy of this transition progressively increases at higher cholesterol contents, and is not detected below 66 mol% cholesterol. Furthermore, the enthalpy changes indicate that the composition of the non-domain forming portion containing DOTAP saturated with cholesterol is relatively constant above 66 mol% cholesterol. Greater transfection efficiency in the presence of 50% serum is observed at the formulations with high cholesterol contents where anhydrous cholesterol domains are detected by DSC. Although formulations possessing higher cholesterol exhibited a greater resistance to serum-induced aggregation, maintenance of small particle size does not appear to be responsible for the enhanced transfection efficiency. Additional studies quantifying albumin binding suggest that cholesterol domains in the lipid/DNA complex do not bind protein, and this may enable these moieties to enhance transfection by facilitating membrane fusion.  相似文献   

3.
Electrotransfection is an effective method for transfecting lymphoid cells. However, the transfection efficiency of certain lymphoid cells is low. L1210 subclones and NFS-70 pro-B cells, which are highly refractory to various transfection methods, were used to identify the limiting factors. Cells were electrotransfected with plasmids coding for green fluorescence protein or luciferase. The luciferase expression of L1210 subclone 3-3 was found to increase 6-12 h after electroporation, but decreased significantly from 12 to 48 h. The lower level of luciferase activity at later time periods correlated with decreases in cell viability, which was shown to be due to apoptosis, as determined by propidium iodide/acrindine orange staining, DNA laddering, and prevention of cell death by addition of caspase inhibitors. Similar results were observed with NFS-70 pro-B cells and select L1210 subclones. In contrast, L1210 parental and L1210 subclone 7-15.6 cells undergo only low levels of apoptosis (< or = 5%). Apoptosis occurred only when DNA (plasmids or salmon sperm DNA) was present during electroporation, but was not dependent on the conformation of the DNA used or the expression of transgenes. Cells pulsed in the presence of dextran sulfate (MW 500,000) did not apoptose. Similar results were observed when L1210 subclone 3-3 was transfected using the cationic lipid 1, 2-dioleoyl-3-trimethylammonium propane, although the transfection efficiency and corresponding rate of apoptosis were significantly lower. Applying the caspase inhibitor fluoromethyl ketone (Boc-ASP-FMK) dramatically improved cell viability and transgene expression of select L1210 subclones and NFS-70 pro-B cells.  相似文献   

4.
Successful intracellular delivery of various bioactive molecules has been reported using cell-permeating peptides (CPPs) as delivery vectors. To determine the effects of CPPs on the cellular uptake of immunoglobulin Fab fragment, conjugates of a radio-iodinated Fab fragment with CPPs (CPP-(125)I-Fab) derived from HIV-1 TAT, HIV-1 REV, and Antennapedia (ANP) were prepared. These vectors are rich in basic amino acids, and their strong adsorption on cell surfaces often results in overestimation of internalized peptides. Cell wash with an acidic buffer (0.2M glycine-0.15M NaCl, pH 3.0) was thus employed in this study to remove cell-surface adsorbed CPP-(125)I-Fab conjugates. This procedure enabled clearer understanding of the methods of internalization of CPP-(125)I-Fab conjugates. The kinetics of internalization of REV-(125)I-Fab conjugate was rapid, and a considerable fraction of REV-(125)I-Fab was taken up by HeLa cells as early as 5 min after administration. It was also shown that cellular uptake of these conjugates was significantly inhibited in the presence of endocytosis/ macropinocytosis inhibitors, in the order REV-(125)I-Fab > or = TAT-(125)I-Fab > or = ANP-(125)I-Fab; this order was the same as for effectiveness of intracellular delivery. Simultaneous cell washing with phosphate-buffered saline (PBS) and this acidic buffer effectively separated the internalized conjugates from the cell-surface-adsorbed ones, and considerable differences were observed in these amounts dependent on the employed CPPs.  相似文献   

5.
We evaluated the transfection efficiency of five different cationic liposome/plasmid DNA complexes, during the in vitro gene transfer into human epithelial tracheal cell lines. A dramatic correlation between the transfection efficiency and the charge ratio (positive charge of liposome to negative charge of DNA) has been found. DC-Chol-DOPE was found to be the most effective liposome formulation. Therefore, a morphological and structural analysis of DC-Chol-DOPE liposomes and DC-Chol-DOPE/DNA complexes, has been performed by transmission electron microscopy (TEM) and by confocal laser scanning microscopy (CLSM), respectively. The process of interaction between DC-Chol-DOPE/DNA complexes and human epithelial tracheal cells has been studied by CLSM. These results raise some issues for in vivo gene therapy.  相似文献   

6.
The combination of cationic lipids with cationic peptides and DNA vectors can produce synergistic effects in gene delivery to eukaryotic cells. Binary complexes of cationic lipids with DNA are well-studied whereas little information is available about the structure of the ternary lipid/peptide/DNA (LPD) complexes and mechanisms defining DNA protection and delivery. Here we use synchrotron small angle X-ray scattering and dynamic light scattering zeta-potential measurements to determine structure and the net charge of supramolecular aggregates of complexes in mixtures of plasmid DNA, cationic liposomes formed from DOTAP, plus a linear cationic ε-oligolysine with the pendant α-amino acids Leu-Tyr-Arg (LYR), ε-(LYR)K10. These ternary complexes display multilamellar structures with relatively constant separation between DOTAP bilayers, accommodating a hydrated monolayer of parallel DNA rods. The DNA-DNA distance in the complexes varies as a function of the net positive to negative (lipid+peptide)/DNA charge ratio. An explanation for the observed dependence of DNA-DNA distance on charge ratio was proposed based on general polyelectrolyte properties of non-stoichiometric polycation-DNA mixtures.  相似文献   

7.
Cytotoxicity and mutagenicity of trans,trans,trans-[PtCl2(CH3COO)2(NH3)(1-adamantylamine)] [trans-adamplatin(IV)] and its reduced analog trans-[PtCl2(NH3)(1-adamantylamine)] [trans-adamplatin(II)] were examined. In addition, the several factors underlying biological effects of these trans-platinum compounds using various biochemical methods were investigated. A notable feature of the growth inhibition studies was the remarkable circumvention of both acquired and intrinsic cisplatin resistance by the two lipophilic trans-compounds. Interestingly, trans-adamplatin(IV) was considerably less mutagenic than cisplatin. Consistent with the lipophilic character of trans-adamplatin complexes, their total accumulation in A2780 cells was considerably greater than that of cisplatin. The results also demonstrate that trans-adamplatin(II) exhibits DNA binding mode markedly different from that of ineffective transplatin. In addition, the reduced deactivation of trans-adamplatin(II) by glutathione seems to be an important determinant of the cytotoxic effects of the complexes tested in the present work. The factors associated with cytotoxic and mutagenic effects of trans-adamplatin complexes in tumor cell lines examined in the present work are likely to play a significant role in the overall antitumor activity of these complexes.  相似文献   

8.
Polyethylenimine (PEI) is one of the most efficient nonviral vectors for gene therapy. The aim of this study was to investigate the role of endocytosis in the transfection of synchronized L929 fibroblasts by PEI/DNA complexes. This was performed by confocal microscopy and flow cytometry, using the endocytosis marker FM4-64 and PEI/DNA complexes labeled either with the DNA intercalator YOYO-1, or with fluorescein covalently linked to PEI. Endocytosis appeared as the major if not the sole mode of entry of the PEI/DNA complexes into the L929 cells. The complexes followed a typical fluid phase endocytosis pathway and were efficiently taken up in less than 10 min in endosomes that did not exceed 200 nm in diameter. Later, the localization of the complexes became perinuclear and fusion between late endosomes was shown to occur. Comparison with the intracellular trafficking of the same complexes in EA.hy 926 cells (W.T. Godbey, K. Wu, A.G. Mikos, Proc. Natl. Acad. Sci. USA 96 (1999)) revealed that endocytosis of PEI/DNA complexes is strongly cell-dependent. In L929 cells, escape of the complexes from the endosomes is a major barrier for transfection. This limited the number of transfected cells to a few percent, even though an internalization of PEI/DNA complexes was observed in most cells. In addition, the entry of the complexes into the nucleus apparently required a mitosis and did not involve the lipids of the endosome membrane. This entry seems to be a short-lived event that involves only a few complexes.  相似文献   

9.
Short cationic linear peptide analogs (LPAs, prepared as Arg-C n -Arg-C n -Lys, where C n represents an alkyl linkage with n = 4, 7 or 11) were synthesized and tested in human breast carcinoma BT-20 and CCRF-CEM leukemia cells for their application as targeting ligands. With constant LPA charge (+4), increasing the alkyl linkage increases the hydrophobic/hydrophilic balance and provides a systematic means of examining combined electrostatic and hydrophobic peptide–membrane interactions. Fluorescently conjugated LPA-C11 (F-LPA-C11) demonstrated significant uptake, whereas there was negligible uptake of the shorter LPAs. By varying temperature (4°C and 37°C) and cell type, the results suggest that LPA-C11 internalization is nonendocytic and nonspecific. The effect of LPA binding on the phase behavior, structure, and permeability of model membranes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine (DPPC/DPPS, 85/15) was studied using differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and fluorescence leakage studies to gain insight into the LPA uptake mechanism. While all LPAs led to phase separation, LPA-C11, possessing the longest alkyl linkage, was able to penetrate into the bilayer and caused holes to form, which led to membrane disintegration. This was confirmed by rapid and complete dye release by LPA-C11. We propose that LPA-C11 achieves uptake by anchoring to the membrane via hydrophobicity and forming transient membrane voids. LPAs may be advantageous as drug transporter ligands because they are small, water soluble, and easy to prepare.  相似文献   

10.
We present a simple method based on transmission electron microscopy that allows investigation of the early steps of polyplex-mediated transfection without the use of labeled DNA. The ultrastructural analysis showed internalization of 0.2-1-micro m aggregates composed of 30-50-nm subunits. In addition, new details of the internalization process were revealed, suggesting an unspecific cell entry mechanism of large DNA aggregates.  相似文献   

11.
While peptides are promising as probes and therapeutics, targeting intracellular proteins will require greater understanding of highly structured, cell-internalized scaffolds. We recently reported BC1, an 11-residue bicyclic peptide that inhibits the Src homology 2 (SH2) domain of growth factor receptor-bound protein 2 (Grb2). In this work, we describe the unique structural and cell uptake properties of BC1 and similar cyclic and bicyclic scaffolds. These constrained scaffolds are taken up by mammalian cells despite their net neutral or negative charges, while unconstrained analogs are not. The mechanism of uptake is shown to be energy-dependent and endocytic, but distinct from that of Tat. The solution structure of BC1 was investigated by NMR and MD simulations, which revealed discrete water-binding sites on BC1 that reduce exposure of backbone amides to bulk water. This represents an original and potentially general strategy for promoting cell uptake.  相似文献   

12.
Several cationic lipids which are highly efficient for delivering genes in vitro do not increase gene delivery in vivo after an intramuscular injection. In order to elucidate the origin of this phenomenon, we have studied the cellular uptake and intracellular fate of cationic lipid/DNA complexes in vitro on myogenic mouse cells (myoblasts and myotubes) of the C2 cell line and of primary cultures. We used a cationic lipid with a spermine head group and its fluorescent analog, and a fluorescent plasmid obtained by nick-translation. In myoblasts, transgene expression was obtained and lipoplexes were internalized in cytoplasmic vesicles. In myotubes, no transgene expression could be detected and we observed an absence of lipoplex internalization. The in vitro uptake of cationic lipid was inversely correlated with the degree of fusion of C2 cell myotubes cultures.  相似文献   

13.
T D Xie  L Sun  H G Zhao  J A Fuchs    T Y Tsong 《Biophysical journal》1992,63(4):1026-1031
Electric parameters and solvent conditions are known to influence the efficiency of DNA transfection of cells by a pulsed electric field (PEF). A previous study (Neumann, E., M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider. 1982. EMBO (Eur. Mol. Biol. Organ.) J. 1:841-845) has indicated that DNA topology is also an important determinant. We report an investigation of the PEF induced uptake, stability, and expression of three different topological isomers, circular supercoiled (scDNA), circular relaxed (crDNA), and linearized (lnDNA) forms of the plasmid pBR322, by Escherichia coli strain JM105. Monomeric pBR322 prepared by the electroelution from an agarose gel was in the supercoiled form. Treatment of the scDNA with wheat germ topoisomerase I removed the superhelicity and the DNA assumed the relaxed circular form. Treatment of scDNA by a restriction endonuclease, EcoRI or Hind III, linearized the DNA. The MgCl2-dependent bindings of all three forms of DNA to the cell surface were indistinguishable. So was the PEF induced cell uptake. In contrast, the transfection efficiency (TE) for the scDNA and the crDNA were high (approximately 2 x 10(8) micrograms-1 DNA at neutral pH), whereas that for the lnDNA was approximately five orders of magnitude lower (less than 1 x 10(3) micrograms-1 DNA). Analysis by agarose gel electrophoresis indicated that the PEF loaded lnDNA was degraded by the host cell within 3 h. However, the loaded scDNA and the crDNA were stable and expressed in the cytoplasm. We conclude that first, the PEF induced DNA entry into E. coli did not depend on the topology of the DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA to cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR, and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays in the presence of serum as determined by flow cytometry and luciferase gene expression, respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled plasmid. Similarly, the polymers end-functionalized with carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15), and in particular oligoethyleneamine groups (1F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in polymer chemistry, such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery.  相似文献   

15.
Mechanism of cell transfection with plasmid/chitosan complexes   总被引:26,自引:0,他引:26  
Chitosan is useful as a non-viral vector for gene delivery. Although there are several reports supporting the use of chitosan for gene delivery, studies regarding effects on transfection and the chitosan-specific transfection mechanism remain insufficient. In this report, the level of expression with plasmid/chitosan was observed to be no less than that with plasmid/lipofectin complexes in SOJ cells. The transfection mechanism of plasmid/chitosan complexes as well as the relationship between transfection activity and cell uptake was analyzed by using fluorescein isothiocyanate-labeled plasmid and Texas Red-labeled chitosan. In regard to effects on transfection, there were several factors to affect transfection activity and cell uptake, for example: the molecular mass of chitosan, stoichiometry of complex, as well as serum concentration and pH of transfection medium. The level of transfection with plasmid/chitosan complexes was found to be highest when the molecular mass of chitosan was 40 or 84 kDa, ratio of chitosan nitrogen to DNA phosphate (N/P ratio) was 5, and transfection medium contained 10% serum at pH 7.0. We also investigated the transfection mechanism, and found that plasmid/chitosan complexes most likely condense to form large aggregates (5-8 microm), which absorb to the cell surface. After this, plasmid/chitosan complexes are endocytosed, and possibly released from endosomes due to swelling of lysosomal in addition to swelling of plasmid/chitosan complex, causing the endosome to rupture. Finally, complexes were also observed to accumulate in the nucleus using a confocal laser scanning microscope.  相似文献   

16.
Atomic force microscopy (AFM) is used to describe the formation process of polymer/DNA complexes. Two main objectives of this research are presented. The first one is to apply AFM as an effective tool to analyse DNA molecules and different polycation/DNA complexes in order to evaluate their degree of condensation (size and shape). The other one is to search for a relationship between the condensation state of DNA and its transfection efficiency. In this study, linear methacrylate based polymers and globular SuperFect polymers are used in order to induce DNA condensation. Ternary complexes, composed of methacrylate based polymers and polyethylene glycol (PEG)-based copolymers, are also investigated. AFM allows us to confirm good condensation conditions and relate them (or not) to transfection efficiencies. These AFM results (obtained after drying in air) are compared with measurements deduced from Dynamic Light Scattering (DLS) experiments performed in water. This comparison allowed us to identify the structural modifications resulting from deposition on the mica surface.  相似文献   

17.
Performances of cationic lipid formulations for intravenous gene delivery to mouse lungs have been previously reported. We report in this study that cationic phosphonolipids, when appropriately formulated, can be good synthetic vectors for gene delivery to lung after intravenous administration. One of our reagents, GLB43, was capable of mediating a 500-fold higher expression in the lungs of mice than could be obtained with free pDNA alone (P=0.018). We demonstrate that the most important parameters for cationic phosphonolipid transfection activity after systemic administration are the chemical structure of the cationic phosphonolipid, the lipid to DNA charge ratio and the inclusion of co-lipid in the formulation. We report using a luciferase reporter gene that transfection activity in vivo 24 h after cationic phosphonolipid systemic administration could not be predicted from in vitro analysis. In contrast to in vitro studies, cationic phosphonolipids including the oleyl acyl chains (GLB43) were more effective than its analogue with the myristyl acyl chains (GLB73). Using pathological analysis of animal livers, we demonstrate that the toxicity level was correlated with the lipoplex formulation and the lipid to DNA ratio.  相似文献   

18.
Cytotoxicity and mutagenicity of trans,trans,trans-[PtCl2(CH3COO)2(NH3)(1-adamantylamine)] [trans-adamplatin(IV)] and its reduced analog trans-[PtCl2(NH3)(1-adamantylamine)] [trans-adamplatin(II)] were examined. In addition, the several factors underlying biological effects of these trans-platinum compounds using various biochemical methods were investigated. A notable feature of the growth inhibition studies was the remarkable circumvention of both acquired and intrinsic cisplatin resistance by the two lipophilic trans-compounds. Interestingly, trans-adamplatin(IV) was considerably less mutagenic than cisplatin. Consistent with the lipophilic character of trans-adamplatin complexes, their total accumulation in A2780 cells was considerably greater than that of cisplatin. The results also demonstrate that trans-adamplatin(II) exhibits DNA binding mode markedly different from that of ineffective transplatin. In addition, the reduced deactivation of trans-adamplatin(II) by glutathione seems to be an important determinant of the cytotoxic effects of the complexes tested in the present work. The factors associated with cytotoxic and mutagenic effects of trans-adamplatin complexes in tumor cell lines examined in the present work are likely to play a significant role in the overall antitumor activity of these complexes.  相似文献   

19.
BACKGROUND: Control of the structure and physicochemical properties of DNA complexed with nonviral vectors is essential for efficient biodistribution and gene delivery to cells. Cationic liposomes interact with DNA giving transfection competent but large and heterogeneous aggregates. On the other hand, cationic detergents condense DNA into small homogeneous but reversible complexes inefficient for transfection. METHODS: In order to combine the favorable features of both vectors, ternary complexes were prepared by adding cationic liposomes to plasmid DNA condensed by cationic detergents. The structure and physicochemical properties of these complexes were investigated by electron microscopy, quasi-elastic light scattering, gel electrophoresis and fluorescence techniques. These data were then correlated with the transfection efficiency and intracellular trafficking of the ternary complexes determined by luciferase gene expression and confocal microscopy, respectively. RESULTS: The ternary complexes were found to form small, homogeneous, globular, stable and positively charged particles with a highly dense and packed lamellar internal structure differing from the multilamellar structure (L(alpha)(C)) of the corresponding lipoplexes. In the presence of serum, the ternary complexes were more efficiently internalized into cells, less toxic and showed 20-fold higher transfection efficiency than lipoplexes. CONCLUSIONS: This study showed that small, monodisperse and highly stable complexes could be obtained by precompaction of DNA with cetyltrimethylammonium bromide, followed by addition of cationic lipids. The higher efficiency of the ternary complexes with respect to their corresponding lipoplexes was related to their internal structure which prevents their dissociation by serum proteins and allows efficient internalization in the target cells.  相似文献   

20.
Several mouse lymphoid cell lines were efficiently transfected with plasmid DNA by a novel method combining DEAE-dextran-mediated DNA uptake and osmotic shock procedure. The cells were first incubated with DNA-DEAE-dextran complex, treated with hypertonic Tris-HCl buffer containing 0.5 M sucrose and 10% poly(ethylene glycol), and then exposed to hypotonic RPMI 1640 medium. This transfection protocol exhibited maximal frequencies of 0.3% and 3.10(-5) for transient gene expression and stable transformation in P3-NSI/1-Ag4-1 cells, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号