首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

2.
Polysialic acid (PSA), a carbohydrate polymer attached to the neural cell adhesion molecule (NCAM), promotes neural plasticity and tumor malignancy, but its mode of action is controversial. Here we establish that PSA controls tumor cell growth and differentiation by interfering with NCAM signaling at cell-cell contacts. Interactions between cells with different PSA and NCAM expression profiles were initiated by enzymatic removal of PSA and by ectopic expression of NCAM or PSA-NCAM. Removal of PSA from the cell surface led to reduced proliferation and activated extracellular signal-regulated kinase (ERK), inducing enhanced survival and neuronal differentiation of neuroblastoma cells. Blocking with an NCAM-specific peptide prevented these effects. Combinatorial transinteraction studies with cells and membranes with different PSA and NCAM phenotypes revealed that heterophilic NCAM binding mimics the cellular responses to PSA removal. In conclusion, our data demonstrate that PSA masks heterophilic NCAM signals, having a direct impact on tumor cell growth. This provides a mechanism for how PSA may promote the genesis and progression of highly aggressive PSA-NCAM-positive tumors.  相似文献   

3.
The vertebrate head is a complex assemblage of cranial specializations, including the central and peripheral nervous systems, viscero- and neurocranium, musculature and connective tissue. The primary differences that exist between vertebrates and other chordates relate to their craniofacial organization. Therefore, evolution of the head is considered fundamental to the origins of vertebrates (Gans and Northcutt, 1983). The transition from invertebrate to vertebrate chordates was a multistep process, involving the formation and patterning of many new cell types and tissues. The evolution of early vertebrates, such as jawless fish, was accompanied by the emergence of a specialized set of cells, called neural crest cells which have long held a fascination for developmental and evolutionary biologists due to their considerable influence on the complex development of the vertebrate head. Although it has been classically thought that protochordates lacked neural crest counterparts, the recent identification and characterization of amphioxus and ascidian genes homologous to those involved in vertebrate neural crest development challenges this idea. Instead it suggests thatthe neural crest may not be a novel vertebrate cell population, but could have in fact originated from the protochordate dorsal midline epidermis. Consequently, the evolution of the neural crest cells could be reconsidered in terms of the acquisition of new cell properties such as delamination-migration and also multipotency which were key innovations that contributed to craniofacial development. In this review we discuss recent findings concerning the inductive origins of neural crest cells, as well as new insights into the mechanisms patterning this cell population and the subsequent influence this has had on craniofacial evolution.  相似文献   

4.
Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.  相似文献   

5.
The neural cell adhesion molecule, NCAM, is involved in multiple cis- and trans-homophilic interactions (NCAM binding to NCAM) thereby facilitating cell–cell adhesion through the formation of zipper-like NCAM-complexes. NCAM is also involved in heterophilic interactions with a number of proteins and extracellular matrix molecules. Some of these heterophilic interactions are mutually exclusive, and some interfere with or are dependent on homophilic NCAM interactions. Furthermore, both homo- and heterophilic interactions are modulated by posttranslational modifications of NCAM. Heterophilic NCAM-interactions initiate several intracellular signal transduction pathways ultimately leading to biological responses involving cellular differentiation, proliferation, migration and survival. Both homo- and heterophilic NCAM-interactions can be mimicked by synthetic peptides, which can induce NCAM-like signalling, and in vitroand in vivo studies suggest that such NCAM mimetics may be used for the treatment of neurodegenerative disorders.Special issue dedicated to Lawrence F. Eng.  相似文献   

6.
7.
The vertebrate neural cell adhesion molecule NCAM mediates heterophilic adhesion to heparan sulfate proteoglycans in embryonic chick brain membranes. In this study, mouse L cells transfected with chicken NCAM were used to identify two of these ligands as agrin and the target of the 6C4 monoclonal antibody. A third heparan sulfate proteoglycan, perlecan, appeared not to support NCAM-mediated adhesion. Enzymatic degradation of chon-droitin sulfates decreased adhesion in agrin-containing membrane fractions but increased adhesion if the agrin had previously been removed by immunoprecipitation, suggesting that interactions between heparan sulfate and chondroitin sulfate proteoglycans have important influences on adhesion. Our experiments support the view that NCAM can interact with multiple, but not with all, heparan sulfate and chondroitin sulfate proteoglycans in chick brain membranes in both positive and negative ways to influence cell adhesion.  相似文献   

8.
The vertebrate neural cell adhesion molecule NCAM mediates adhesion by both homophilic and heterophilic mechanisms, with heparan sulfate proteoglycans (HSPGs) being likely heterophilic ligands. In this study, transfected chicken NCAM polypeptides expressed on mouse L cells mediated the adhesion of these cells to several different heparan sulfate proteoglycans in nonionic detergent extracts of Embryonic Day 10 chicken brain membranes. In addition, adhesion inhibition experiments suggested a hitherto-undetected role for chondroitin sulfate proteoglycans in the stimulation of NCAM-mediated adhesion to some, but not all, of the HSPG ligands. Our experiments support the view that NCAM is a multivalent adhesive molecule whose function is affected by interactions with extracellular matrix and cell surface molecules.  相似文献   

9.
10.
Polysialic acid (PSA) is a developmentally regulated carbohydrate attached to the neural cell adhesion molecule (NCAM). PSA is involved in dynamic processes like cell migration, neurite outgrowth and neuronal plasticity. In mammals, polysialylation of NCAM is catalyzed independently by two polysialyltransferases, STX (ST8Sia II) and PST (ST8Sia IV), with STX mainly acting during early development and PST at later stages and into adulthood. Here, we functionally characterize zebrafish Stx and Pst homolog genes during fish development and evaluate their catalytic affinity for NCAM in vitro. Both genes have the typical gene architecture and share conserved synteny with their mammalian homologues. Expression analysis, gene-targeted knockdown experiments and in vitro catalytic assays indicate that zebrafish Stx is the principal--if not unique--polysialyltransferase performing NCAM-PSA modifications in both developing and adult fish. The knockdown of Stx exclusively affects PSA synthesis, producing defects in axonal growth and guidance. Zebrafish Pst is in principle capable of synthesizing PSA, however, our data argue against a fundamental function of the enzyme during development. Our findings reveal an important divergence of Stx and Pst enzymes in vertebrates, which is also characterized by a differential gene loss and rapid evolution of Pst genes within the bony-fish class.  相似文献   

11.
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) appeared during the evolution of vertebrates as a new mechanism for regulation of cell interactions. This large and abundant glycoprotein can exert steric effects at the cell surface that lead to the attenuation of cell-cell bonds mediated not only by NCAM but also a variety of other adhesion receptors. PSA-NCAM expression changes both as a result of developmental programs and physiological inputs. This global modulation of cell-cell attachment has been shown to facilitate cell migration, axon pathfinding and targeting, and plastic changes in the embryonic and adult nervous system.  相似文献   

12.
The neural cell adhesion molecule (NCAM) participates in adhesion and neuritic outgrowth during nervous system development. In the adult brain, NCAM is considered to be involved in neuronal sprouting and synaptic remodeling. the NCAM concentration of brain tissue has proved to be a useful marker of these processes, especially when viewed in comparison with the concentration of a marker of mature synapses, e.g. D3-protein (SNAP-25) or synaptophysin. The present review focusses on studies of adult brain in which NCAM concentration estimates and NCAM/D3 ratios have been used to evaluate the rate of synaptic remodeling in brain damage and degenerative diseases.Special issue dedicated to Dr. Robert Balázs.  相似文献   

13.
The neural cell adhesion molecule (NCAM) is known to take part in the cohesion of cellular interactions through a homophilic binding mechanism. During development, NCAM shifts from an embryonic polysialic acid-rich form to a poorer adult one. This conversion reflects a loss of plasticity to the benefit of more stability. We have shown here an inverse process, namely the reexpression of the embryonic form of NCAM in adult rats following a status epilepticus induced through systemic administration of kainic acid.  相似文献   

14.
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.  相似文献   

15.
The neural cell adhesion molecule (NCAM) is implicated in important functions during development and maintenance of the nervous system. Two of the three major isoforms, NCAM 140 and NCAM 180, are transmembrane glycoproteins with large cytoplasmic domains of different length. The purpose of this study was to identify novel intracellular binding partners of NCAM 140 and NCAM 180. We expressed both cytoplasmic domains, as well as cytoplasmic fragments of NCAM, as fusion proteins in Escherichia coli and used them for ligand affinity chromatography or glutathione S-transferase (GST) pull-down assays. By peptide mass fingerprinting Western blot analysis, or both, we identified PLCgamma, LANP, syndapin, PP1, and PP2A as binding partners for both NCAM 140 and NCAM 180, whereas TOAD-64 was identified as a NCAM 180-specific interacting protein. Furthermore, we were able to show that binding of these novel binding proteins, as well as the previously described interaction partners ROK alpha (rho A binding kinase alpha) and alpha- and beta-tubulin, bind to specific cytosolic sequences of NCAM. For this purpose, we performed GST pull-down experiments using cytosolic fragments of NCAM as GST-fusion proteins and cytosolic- or cytoskeleton-enriched protein fractions of rat brain.  相似文献   

16.
The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and learning. In this study, we identified a synthetic peptide-ligand of the NCAM Ig1 module by combinatorial chemistry and showed it could modulate NCAM-mediated cell adhesion and signal transduction with high potency. In cultures of dissociated neurons, this peptide, termed C3, stimulated neurite outgrowth by activating a signaling pathway identical to that activated by homophilic NCAM binding. A similar effect was shown for the NCAM Ig2 module, the endogenous ligand of NCAM Ig1. By nuclear magnetic resonance spectroscopy, the C3 binding site in the NCAM Ig1 module was mapped and shown to be different from the binding site of the NCAM Ig2 module. The C3 peptide may prove useful as a lead in development of therapies for neurodegenerative disorders, and the C3 binding site of NCAM Ig1 may represent a target for discovery of nonpeptide drugs.  相似文献   

17.
The Ca2(+)-independent neural cell adhesion molecule, NCAM, is expressed by both nerve and muscle cells and has been shown to mediate both nerve-nerve and nerve-muscle cell interaction. A role for NCAM in muscle-muscle cell interaction has been proposed but not demonstrated. Here we report evidence that NCAM is expressed by embryonic chick muscle cells during in vitro development and functions together with Ca2(+)-dependent adhesion molecules in mediating myoblast interaction during the formation of multinucleate cells.  相似文献   

18.
The neural cell adhesion molecule (NCAM) has different isoforms due to different sizes in its polypeptide and plays a significant role in neural development. In neural development, the function of NCAM is modified by polysialylation catalyzed by two polysialyltransferases, ST8Sia II and ST8Sia IV. Previously, it was reported by others that ST8Sia II polysialylates only transmembrane isoforms of the NCAM, such as NCAM-140 and NCAM-180, but not NCAM-120 and NCAM-125 anchored by a glycosylphosphotidylinositol. In the present study, we first discovered that ST8Sia II polysialylates all isoforms of the NCAM examined, and we demonstrated that polysialylation of NCAM expressed on 3T3 cells facilitates neurite outgrowth regardless of isoforms of NCAM, where polysialic acid is attached. We then show that neurite outgrowth is significantly facilitated only when polysialylated NCAM is present in cell membranes. Moreover, the soluble NCAM coated on plates did not have an effect on neurite outgrowth exerted by soluble L1 adhesion molecule coated on plates. These results, taken together, indicate that ST8Sia II plays critical roles in modulating the function of all major isoforms of NCAM. The results also support previous studies showing that a signal cascade initiated by NCAM differs from that initiated by L1 molecule.  相似文献   

19.
N Moran  E Bock 《FEBS letters》1988,242(1):121-124
A solid-phase assay has been developed for the investigation of the kinetics of neural cell adhesion molecule (NCAM) binding. Using this assay we can show that NCAM binds to itself in a time-dependent and saturable manner. Binding constants (KB values) of 6.9 x 10(-8) M and 1.23 x 10(-6) M, respectively, were obtained for adult and newborn rat NCAM homophilic binding. Binding is specifically inhibited by Fab' fragments of polyclonal anti-NCAM antibodies but is unaffected by heparin or chondroitin sulphate. This indicates that the NCAM homophilic binding site is separate from and independent of the heparin-binding site and that a developmental modification, probably polysialation, gives rise to marked differences in the adhesive properties of NCAM.  相似文献   

20.
We have demonstrated previously that the neural cell adhesion molecule (NCAM) interacts with a neuronal heparan sulfate proteoglycan. The binding of this proteoglycan(s) by NCAM appears to be required for NCAM-mediated cell adhesion, although the mechanism is unclear. In the present study we show that a heparan sulfate proteoglycan copurifies with NCAM, and provide an initial biochemical characterization of the proteoglycan. The copurification of a heparan sulfate proteoglycan with NCAM was demonstrated following immunopurification of NCAM from a detergent extract of cell membranes derived from Na2(35)SO4-labeled neural retinal cells. A large-molecular-weight, 35SO4-labeled molecule copurified with NCAM isolated from these neural cell cultures, and was resistant to chondroitinase ABC treatment, but degraded completely by nitrous acid treatment. These results indicate that the molecule is a heparan sulfate proteoglycan. Although this proteoglycan copurifies with NCAM, it is not detected when the neuron-glia cell adhesion molecule (NgCAM) is immunopurified using the 8D9 monoclonal antibody. The heparan sulfate proteoglycan may also be a membrane-associated proteoglycan since it interacts with phenyl-Sepharose. Molecular weight characterization of the proteoglycan by gel filtration chromatography indicates a molecular weight of 400-520 kDa. The heparan sulfate glycosaminoglycan chains were shown to have an average molecular weight of approximately 40 kDa, and the polypeptide backbone was estimated to be 120 kDa by polyacrylamide gel electrophoresis. These data therefore demonstrate that a neuronal heparan sulfate proteoglycan copurifies with NCAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号