首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila stomatogastric nervous system (SNS) is a compact collection of neurons that arises from the migration of neural precursors. Here we describe genetic tools allowing functional analysis of the SNS during the migratory phase of development. We constructed GAL4 lines driven by fragments of the Ret promoter, which yielded expression in a subset of migrating neural SNS precursors and also included a distinct set of midgut associated cells. Screening of additional GAL4 lines driven by fragments of the Gfrl/Munin, forkhead, twist and goosecoid (Gsc) promoters identified a Gsc fragment with expression from initial selection of SNS precursors until the end of embryogenesis. Inhibition of EGFR signaling using three identified lines disrupted the correct patterning of the frontal and recurrent nerves. To manipulate the environment traveled by SNS precursors, a FasII-GAL4 line with strong expression throughout the entire intestinal tract was identified. The transgenic lines described offer the ability to specifically manipulate the migration of SNS precursors and will allow the modeling and in-depth analysis of neuronal migration in ENS disorders such as Hirschsprung’s disease.  相似文献   

2.
3.
Cellular Mechanism of Myelination in the Central Nervous System   总被引:1,自引:7,他引:1       下载免费PDF全文
A study of myelination with electron microscopy has been carried out on the spinal cord of young rats and cats. In longitudinal and transverse sections the intimate relationship of the growing axons with the oligodendrocytes was observed. Early naked axons appear to be embedded within the cytoplasm and processes of the oligodendrocytes from which they are limited only by the intimately apposed membranes of both elements (axon-oligocytic membrane). In a transverse section several axons are observed to be in a single oligodendrocyte. The process of myelination consists in the laying down, within the cytoplasm of the oligodendrocyte and around the axon, of concentric membranous myelin layers. The first of these layers is deposited at a certain distance (200 to 600 A or more) from the axon-oligocytic membrane. This and all the other subsequently formed membranes have higher electron density and are apparently formed by the coalescence and fusion of vesicles (of 200 to 800 A) and membranes found in large amounts within the cytoplasm of the oligodendrocytes. At an early stage the myelin layers may be discontinuous and some vesicular material may even be trapped among them or between the myelin proper and the axon-oligocytic membrane. Then, when the 8th to 10th layer is deposited, the complete coalescence and alignment of the lamellae leads to the characteristic orderly multilayered organization of the myelin sheath. Myelination in the central nervous system appears to be a process of membrane synthesis within the cytoplasm of the oligodendrocyte and not a result of the wrapping of the plasma membranes as postulated in Geren's hypothesis for the peripheral nerve fibers. The possible participation of Schwann cell cytoplasm in peripheral myelination is now being investigated.  相似文献   

4.
The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.  相似文献   

5.
三疣梭子蟹胚胎期中枢神经系统的发生和发育   总被引:2,自引:0,他引:2  
薛俊增 《动物学研究》2005,26(2):184-189
应用组织学方法研究三疣梭子蟹胚胎期中枢神经系统的发生和发育,光学显微镜下镜检切片,在第二期卵内无节幼体阶段开始观察到脑;第二期卵内状幼体阶段,前脑由视神经层、侧原脑和中央原脑组成,与位于食道两侧的中脑和后脑形成完整的脑。三疣梭子蟹胚胎期腹神经链由1对大颚、2对小颚和2对颚足所对应的神经节以及腹部神经链组成。光镜下大颚神经节可于第二期卵内无节幼体阶段观察到,2对小颚和2对颚足神经节则在第二期卵内状幼体阶段观察到;腹部神经链则在第三期卵内状幼体阶段观察到。三疣梭子蟹胚胎期中枢神经系统由脑和腹神经链组成,脑由前脑、中脑和后脑组成,脑位于背部,通过2条围食道神经与腹神经链相连。中枢神经系统的不同部分的形成在胚胎发育过程中具有阶段性差异。  相似文献   

6.
Abstract: Nitric oxide (NO) and natriuretic peptide hormones play key roles in a surprising number of neuronal functions, including learning and memory. Most data suggest that they exert converging actions by elevation of intracellular cyclic GMP (cGMP) levels through activation of soluble and particulate guanylyl cyclases. However, cGMP is only the starting point for multiple signaling cascades, which are now beginning to be defined. A primary action of elevated cGMP levels is the stimulation of cGMP-dependent protein kinase (PKG), the major intracellular receptor protein for cGMP, which phosphorylates substrate proteins to exert its actions. It has become increasingly clear that PKG mediates some of the neuronal effects of cGMP, but how is not yet clear. One clear illustration of this pathway has been reported in striatonigral nerve terminals, where NO mediates phosphorylation of the protein phosphatase regulator dopamine- and cyclic AMP-regulated phosphoprotein having a molecular mass of 32,000 (DARPP-32) by PKG. There are remarkably few PKG substrates in brain whose identities are known. A survey of these proteins and those known from other tissues that might also be found in the nervous system reveals the key molecular sites where cGMP and PKG signaling is likely to be regulating neural function. These potential substrates are critically placed to have profound effects on the protein phosphorylation network through regulation of protein phosphatases, intracellular calcium levels, and the function of many ion channels and neurotransmitter receptors. The brain also contains a rich diversity of specific PKG substrates whose identities are not yet known. Their future identification will provide exciting new leads that will permit better understanding of the role of PKG signaling in both basic and higher orders of brain function.  相似文献   

7.
Ordinary differential equations are used to model a peculiar motor behaviour in the anomuran decapod crustacean Emerita analoga. Little is known about the neural circuitry that permits E. analoga to control the phase relationships between movements of the fourth legs and pair of uropods as it digs into sand, so mathematical models might aid in identifying features of the neural structures involved. The geometric arrangement of segmental ganglia controlling the movements of each limb provides an intuitive framework for modelling. Specifically, due to the rhythmic nature of movement, the network controlling the fourth legs and uropods is viewed as three coupled identical oscillators, one dedicated to the control of each fourth leg and one for the pair of uropods, which always move in bilateral synchrony. Systems of Morris–Lecar equations describe the voltage and ion channel dynamics of neurons. Each central pattern generator for a limb is first modelled as a single neuron and then, more realistically as a multi-neuron oscillator. This process results in high-dimensional systems of equations that are difficult to analyse. In either case, reduction to phase equations by averaging yields a two-dimensional system of equations where variables describe only each oscillator’s phase along its limit cycle. The behaviour observed in the reduced equations approximates that of the original system. Results suggest that the phase response function in the two dimensional system, together with minimal input from asymmetric bilateral coupling parameters, is sufficient to account for the observed behaviour.  相似文献   

8.
Understanding of the echinoderm nervous system is limited due to its distinct organization in comparison to other animal phyla and by the difficulty in accessing it. The transparent and accessible, apodid sea cucumber Leptosynapta clarki provides novel opportunities for detailed characterization of echinoderm neural systems. The present study used immunohistochemistry against FMRFamide and histamine to describe the neural organization in juvenile and adult sea cucumbers. Histaminergic- and FMRFaminergic-like immunoreactivity is reported in several distinct cell types throughout the body of L. clarki. FMRFamide-like immunoreactive cell bodies were found in the buccal tentacles, esophageal region and in proximity to the radial nerve cords. Sensory-like cells in the tentacles send processes toward the circumoral nerve ring, while unipolar and bipolar cells close to the radial nerve cords display extensive processes in close association with muscle and other cells of the body wall. Histamine-like immunoreactivity was identified in neuronal somatas located in the buccal tentacles, circumoral nerve ring and in papillae distributed across the body. The tentacular cells send processes into the nerve ring, while the processes of cells in the body wall papillae extend to the surface epithelium and radial nerve cords. Pharmacological application of histamine produced a strong coordinated, peristaltic response of the body wall suggesting the role of histamine in the feeding behavior. Our immunohistochemical data provide evidence for extensive connections between the hyponeural and ectoneural nervous system in the sea cucumber, challenging previously held views on a clear functional separation of the sub-components of the nervous system. Furthermore, our data indicate a potential function of histamine in coordinated, peristaltic movements; consistent with feeding patterns in this species. This study on L. clarki illustrates how using a broader range of neurotransmitter systems can provide better insight into the anatomy, function and evolution of echinoderm nervous sytems.  相似文献   

9.
Brain tumors are heterogeneous tumors composed of differentiated tumor cells that resemble various neural cells and a small number of multipotent cancer stem cells. These tumors modify normal cells in their environment to promote tumor growth, invasion and metastases by various ways. Recent publications show that glioblastoma cells release microvesicles that contain a select subset of cellular proteins and RNAs. These microvesicles are avidly taken up by normal cells in cell culture and can change the translational profile of these cells through delivery of tumor-derived mRNAs, which are translated into functional proteins. In addition to mRNA and proteins, microvesicles have been shown to contain microRNAs, non-coding RNAs and DNA. This commentary explores the recent advances in this novel intercellular communication route and discusses the potential physiological role of microvesicles in brain tumorigenesis.  相似文献   

10.
Flaviviruses such as tick-borne encephalitis virus, Japanese encephalitis virus, West Nile virus, and St. Louis encephalitis virus are important neurotropic human pathogens, typically causing a devastating and often fatal neuroinfection. Flaviviruses induce neuroinflammation with typical features of viral encephalitides, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. Development of safe and effective live-virus vaccines against neurotropic flavivirus infections demands a detailed knowledge of their neuropathogenesis in a primate host that is evolutionarily close to humans. Here, we used computerized morphometric analysis to quantitatively assess the cellular inflammatory responses in the central nervous system (CNS) of rhesus monkeys infected with three antigenically divergent attenuated flaviviruses. The kinetics, spatial pattern, and magnitude of microglial activation, trafficking of T and B cells, and changes in T cell subsets within the CNS define unique phenotypic signatures for each of the three viruses. Our results provide a benchmark for investigation of cellular inflammatory responses induced by attenuated flaviviruses in the CNS of primate hosts and provide insight into the neuropathogenesis of flavivirus encephalitis that might guide the development of safe and effective live-virus vaccines. (J Histochem Cytochem 57:973–989, 2009)  相似文献   

11.
12.
Sphingosine-1-phosphate (S1P), a potent lipid mediator, transduces intracellular signals through the activation of S1P receptors (S1PRs). Although S1PRs have been shown to play an important role in the central nervous system (CNS), accurate localization and the function of S1PR1 in the human CNS are still unclear. In this study, we investigated the localization of S1PR1 in the human CNS of postmortem samples, using a rabbit polyclonal antibody, the specificity of which had been well defined. Immunohistochemical investigation of paraffin-embedded sections revealed diffuse granular staining of the gray matter. The signals of the gray matter were much stronger than those of the white matter. The immunohistochemical expression levels correlated well with the results of quantitative real-time RT-PCR–based analysis and Western blotting. Studies using double immunostaining and immunoelectron microscopy revealed that the antigen was strongly expressed in the membrane of the astrocytic foot processes of glia limitans and astrocytes with radial cytoplasm, but not distributed in neurons. In neurological disorders, hypertrophic astrocytes with strong expression of glial fibrillary acidic protein exhibited significantly decreased expression of S1PR1 in contrast to its strong expression in astrocytes forming fibrillary gliosis. These results indicate that S1PR1 is localized in astrocytes, and its expression level may change during the processes that occur after brain damage. (J Histochem Cytochem 58:847–856, 2010)  相似文献   

13.
Neurochemical Research - The nuclear envelope (NE) separates genomic DNA from the cytoplasm and provides the molecular platforms for nucleocytoplasmic transport, higher-order chromatin...  相似文献   

14.
15.
Chemokines are small secreted proteins that are essential for the recruitment and activation of specific leukocyte subsets at sites of inflammation and for the development and homeostasis of lymphoid and nonlymphoid tissues. During the past decade, chemokines and their receptors have also emerged as key signaling molecules in neuroinflammatory processes and in the development and functioning of the central nervous system. Neurons and glial cells, including astrocytes, oligodendrocytes, and microglia, have been identified as cellular sources and/or targets of chemokines produced in the central nervous system in physiological and pathological conditions. In this article, we provide an update of chemokines and chemokine receptors expressed by glial cells focusing on their biological functions and implications in neurological diseases.  相似文献   

16.
Abstract: The mechanisms responsible for the accumulation of redox-active brain iron in normal senescence and in Parkinson's disease remain poorly understood. The aminothiol compound cysteamine (CSH) induces the appearance of autofluorescent, iron-rich cytoplasmic granules in cultured astroglia that are identical to glial inclusions that progressively accumulate in the aging periventricular brain. Both in situ and in culture, these glial inclusions appear to arise in the context of a generalized cellular stress (heat shock) response. Several laboratories have previously concluded that porphyrins and heme ferrous iron are responsible, respectively, for red-orange autofluorescence and nonenzymatic peroxidase activity in the glial inclusions. In the present study we found that, contrary to hypothesis, CSH suppresses the incorporation of the heme precursors δ-amino[14C]levulinic acid and [14C]glycine into astroglial porphyrin and heme in primary culture. Similar results were obtained when the cells were preloaded with radiolabeled heme precursors for 24 h before CSH treatment, suggesting that the latter directly inhibits porphyrin-heme biosynthesis rather than limiting precursor uptake by these cells. We also demonstrated that CSH exposure results in the sequestration of iron-59 by astroglial mitochondria (granule precursors). The results of this study suggest that stress-related trapping of nonheme iron by astroglial mitochondria may be an important mechanism underlying the pathological accumulation of redox-active iron in the basal ganglia of subjects with Parkinson's disease. CSH-treated astrocytes provide a useful model to investigate the role of stress-related dysregulation of neuroglial iron metabolism in the aging and degenerating nervous system.  相似文献   

17.
The stomatogastric nervous system of crustaceans, which controlsthe four parts ofthe foregut, is subject to modulation at alllevels, sensory, central and motor. Modulation of the centralpattern generators, which are themselves made up largely ofmotor neurons, providesfor increased behavioral flexibilityin a variety of ways. First, each of the pattern generatorscan be reconfigured to give multiple outputs. Second, the "boundaries"of the different pattern generators are in fact somewhat fluid,so that the neuronal composition of the pattern generators canbe altered. For example, neurons can switch from one patterngenerator toanother, or two or more pattern generators can fuseto generate an entirely new pattern and thereby produce a newbehavior. The mechanisms responsible for many of these modulationsinclude alterations of both intrinsic properties and synapticinteractions between neurons. In addition, the alteration ofmembrane properties contributes more directly to the behavioraloutput by changing action potential frequency. Finally, themuscles of the stomatogastric system can themselves be modulated,with the cpvl muscle, for example, becoming an endogenous oscillatorin the presence of either dopamine or the peptide FMRFamide.  相似文献   

18.
19.
20.
Microglia are the resident macrophage-like cells of the central nervous system (CNS) and, as such, have critically important roles in physiological and pathological processes such as CNS maturation in development, multiple sclerosis, and spinal cord injury. Microglia can be activated and recruited to action by neuronal injury or stimulation, such as axonal damage seen in MS or ischemic brain trauma resulting from stroke. These immunocompetent members of the CNS are also thought to have roles in synaptic plasticity under non-pathological conditions. We employ protocols for culturing microglia from the neonatal and adult tissues that are aimed to maximize the viable cell numbers while minimizing confounding variables, such as the presence of other CNS cell types and cell culture debris. We utilize large and easily discernable CNS components (e.g. cortex, spinal cord segments), which makes the entire process feasible and reproducible. The use of adult cells is a suitable alternative to the use of neonatal brain microglia, as many pathologies studied mainly affect the postnatal spinal cord. These culture systems are also useful for directly testing the effect of compounds that may either inhibit or promote microglial activation. Since microglial activation can shape the outcomes of disease in the adult CNS, there is a need for in vitro systems in which neonatal and adult microglia can be cultured and studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号