首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

2.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

3.
The action of sodium nitroprusside, nitrite-anions and hydrogen peroxide on Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (Ca(2+)-independent) enzymatic activity in myometrium sarcolemma fraction is investigated. It is established, that 0.1 mM sodium nitroprusside and 10(-8)-10(-5) M nitrite-anions essentially reduce Ca2+, Mg(2+)-ATPase activity whereas Mg(2+)-ATPase proved to be absolutely resistant to them. At rather high concentration of nitrite-anions (0.1 mM) appreciable stimulation of Ca2+, Mg(2+)-ATPase was observed. Hydrogen peroxide (10(-8)-10(-4)), depending on the concentration suppressed both enzymes activity. However, Ca2+, Mg(2+)-ATPase proved to be more sensitive to the action of H2O2 (seeming K(i) = 0.42 +/- 0.1 microM), than Mg(2+)-ATPase (seeming K(i) = 3.1 +/- 0.9 microM). At presence of 1 mM ditiothreitole (a reducer of SH groups of the membrane surface) action of investigated substances considerably decreased. Reagents on carboxic- (dicyclogexilcarbodiimid) and amino- groups of the membrane (trinitrobenzolsulfonic acid) inhibited both Ca2+, Mg(2+)-ATPase, and Mg(2+)-ATPase activity in membrane fractions. In the presence of noted reagents sodium nitroprusside and nitrite-anions action was not almost shown. Hence, nitrogen oxide, nitrite-anions and hydrogen peroxide suppress Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (only hydrogen peroxide) activity in the plasmatic membrane of myometrium cells, and this action can be connected with direct updating of superficial chemical groups of the membrane.  相似文献   

4.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

5.
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.  相似文献   

6.
A (Ca2+, Mg2+)-ATPase activity and a (Ca2+, Mg2+)-dependent phosphorylation from ATP have been found in plasma membrane fragments from squid optical nerves under conditions where contamination by intracellular organelles is unlikely. The properties of this (Ca2+, Mg2+)-ATPase activity are almost identical to those of the ATP-dependent uncoupled Ca2+ efflux observed in dialyzed squid giant axons. This gives further support to the notion that the mechanism responsible for maintaining the low levels of ionized Ca concentration in nerves at rest is not a Na+-Ca2+ exchange system but an ATP-driven uncoupled Ca2+ pump.  相似文献   

7.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

8.
Conditions which were optimal for the stabilization of Ca2(+)-transporting ATPase in solubilized sarcoplasmic reticulum membranes (Piku?la, S., Mullner, N., Dux, L. and Martonosi, A. (1988) J. Biol. Chem. 263, 5277-5286) were also found conducive for preservation of (Ca2+ + Mg2+)-ATPase activity in detergent-solubilized erythrocyte plasma membrane for up to 60 days. Of particular importance for the stabilization of calmodulin-stimulated Ca2(+)-dependent activity of (Ca2+ + Mg2+)-ATPase of solubilized erythrocyte plasma membrane was the presence of Ca2+ (10-20 mM), glycerol, anti-oxidants, proteinase inhibitors and appropriate detergents. Among eight detergents tested octaethylene glycol dodecyl ether, polyoxyethylene glycol(10) lauryl alcohol and polydocanol were found to be promotive in long-term preservation of the enzyme activity. Under these conditions (Ca2+ + Mg2+)-ATPase of erythrocyte ghosts became highly stable and developed microcrystalline arrays after storage for 35 days. Electron micrographs of the negatively stained and thin sectioned material indicated that crystals of purified, detergent-solubilized, lipid-stabilized erythrocyte (Ca2+ + Mg2+)-ATPase differ from those of Ca2(+)-ATPase of detergent-solubilized sarcoplasmic reticulum microsomes.  相似文献   

9.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

10.
Rough endoplasmic reticulum membranes, purified from isolated rat pancreatic acini stimulated by carbachol, had a decreased Ca2+ content and increased (Ca2+ + Mg2+)-ATPase activity. Ca2+ was regained and ATPase activity reduced to control levels only after blockade by atropine. The (Ca2+ + Mg2+)-ATPase was activated by free Ca2+ (half-maximal at 0.17 microM; maximal at 0.7 microM) over the concentration range which occurs in the cell cytoplasm. Pretreatment with EGTA, at a high concentration (5 mM), inhibited ATPase activity which, our results suggest, was due to removal of a bound activator such as calmodulin. The rate of (Ca2+ + Mg2+)-ATPase actively declined during the 10-min period over which maximal active accumulation of Ca2+ by membrane vesicles occurs. In the presence of ionophore A23187, which released actively accumulated Ca2+ and stimulated the (Ca2+ + Mg2+)-ATPase, this time-dependent decline in activity was not observed. Our data provide evidence that the activity of the Ca2+-transporting ATPase of the rough endoplasmic reticulum is regulated by both extra and intravesicular Ca2+ and is consistent with a direct role of this enzyme in the release and uptake of Ca2+ during cholinergic stimulation of pancreatic acinar cells.  相似文献   

11.
With the aim of comparative estimation of efficacy of well-known inhibitors of energy-dependent Ca(2+)-transporting systems their effects were investigated on the activity of purified Ca2+, Mg(2+)-ATPase of the myometrium cell plasma membranes. From the approved inhibitors (eosin Y, o-vanadate, thapsigargin, cyclopiazonic acid, ruthenium red, sodium azide) only eosin Y and o-vanadate are potent inhibitors of myometrium sarcolemma Ca(2+)-pump: the values of Ki equal 0.8 and 4.7 microM, respectively. Thapsigargin and cyclopiazonic acid as well as ruthenium red in concentrations inhibiting, respectively, endo(sarco)plasmic reticulum Ca(2+)-pump and energy-dependent Ca(2+)-transport in mitochondria had no effect on the Ca2+, Mg(2+)-ATPase of the uterus smooth muscle cell plasma membrane. Sodium azide (10 mM) blocking completely Ca(2+)-transport in mitochondria inhibited activity of the plasma membrane Ca(2+)-transporting ATPase by 14%.  相似文献   

12.
P Askerlund 《Plant physiology》1997,114(3):999-1007
The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.  相似文献   

13.
A Ca(2+)-ATPase with an apparent Km for free Ca2+ = 0.23 microM and Vmax = 44 nmol Pi/mg/min was detected in a rat parotid plasma membrane-enriched fraction. This Ca(2+)-ATPase could be stimulated without added Mg2+. However, the enzyme may require submicromolar concentrations of Mg2+ for its activation in the presence of Ca2+. On the other hand, Mg2+ could substitute for Ca2+. The lack of a requirement for added Mg2+ distinguished this Ca(2+)-ATPase from the Ca(2+)-transporter ATPase in the plasma membranes and the mitochondrial Ca(2+)-ATPase. The enzyme was not inhibited by several ATPase inhibitors and was not stimulated by calmodulin. An antibody which was raised against the rat liver plasma membrane ecto-ATPase, was able to deplete this Ca(2+)-ATPase activity from detergent solubilized rat parotid plasma membranes, in an antibody concentration-dependent manner. Immunoblotting analysis of the pellet with the ecto-ATPase antibody revealed the presence of a 100,000 molecular weight protein band, in agreement with the reported ecto-ATPase relative molecular mass. These data demonstrate the presence of a Ca(2+)-ATPase, with high affinity for Ca2+, in the rat parotid gland plasma membranes. It is distinct from the Ca(2+)-transporter, and immunologically indistinguishable from the plasma membrane ecto-ATPase.  相似文献   

14.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 mumol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 +/- 9 microM and 0.25 +/- 0.10 microM, respectively. Phosphorylation of plasma membranes with [gamma-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

15.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

16.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

17.
It is shown, that for correct definition of "basal" Ca(2+)-independent Mg(2+)-dependent ATPase ac-activity (10-13 mmol Pi/hour on 1 mg of protein) in a fraction of uterus smooth muscle cell plasma membranes is necessary to use in medium without calcium of an incubation not only EGTA and digitonin--of the factor of infringement in activity by this subcellular structure, but inhibitors of others Mg(2+)-dependent ATP-hydrolyse enzymatic systems localized as in plasma membrane (Na+, K(+)-ATPase) and in others subcellular frames, first of all, in mitochondria (Mg(2+)-ATPase) and endoplasmic reticulum (transport Ca2+, Mg(2+)-ATPase). In the case of a sacolemal fraction of a smooth muscle the contribution of others Mg(2+)-dependent ATP-hydrolyse systems in a common enzymatic hydrolysis ATP, which unconnected to functioning "basal" Ca(2+)-independent Mg(2+)-dependent ATPase, is very appreciable and achieves 35%. The researches, carried out in the frameworks of definition of initial velocity of enzymatic reaction, have enabled to define its some properties--cationic and anionic specificity, and also sensitivity to action of some inhibitors. It has appeared, that the "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction is nonspecific rather both in relation to cations of divalent metals Me2+, and cations of monovalent metals and anions, which were utilized for support of ionic strength. The cations La--antagonist of cations Ca--practically did not influence enzymatic activity. The non-specific inhibitors transport of ATPases--p-chloromercuribenzoate, o-vanadate and eosine Y with a various degree of efficiency inhibited "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction. On the basis of the analysis of the own and literary data the conclusion is made that "basal" Ca(2+)-independent Mg(2+)-dependent ATPase of a smooth muscle cell plasma membrane is considerably less sensitive to action of nonspecific inhibitors of the Ca(2+)-transporting systems, than these systems.  相似文献   

18.
SERCA1a, the fast-twitch skeletal muscle isoform of sarco(endo)plasmic reticulum Ca(2+)-ATPase, was expressed in yeast using the promoter of the plasma membrane H(+)-ATPase. In the yeast Saccharomyces cerevisiae, the Golgi PMR1 Ca(2+)-ATPase and the vacuole PMC1 Ca(2+)-ATPase function together in Ca2+ sequestration and Ca2+ tolerance. SERCA1a expression restored growth of pmc1 mutants in media containing high Ca2+ concentrations, consistent with increased Ca2+ uptake in an internal compartment. SERCA1a expression also prevented synthetic lethality of pmr1 pmc1 double mutants on standard media. Electron microscopy and subcellular fractionation analysis showed that SERCA1a was localized in intracellular membranes derived from the endoplasmic reticulum. Finally, we found that SERCA1a ATPase activity expressed in yeast was regulated by calcineurin, a Ca2+/calmodulin-dependent phosphoprotein phosphatase. This result indicates that calcineurin contributes to calcium homeostasis by modulating the ATPase activity of Ca2+ pumps localized in intra-cellular compartments.  相似文献   

19.
Purified myometrium cells plasma membrane Ca2+, Mg(2+)-ATPase was reconstitute in liposomes in functionally active state by the method of cholate dialysis: it showed ATP-hydrolase activity increased by 0.8 microM A23187 average 4 times and it showed Mg2+, ATP-dependent Ca(2+)-transporting activity. Reconstituted system transported Ca2+ at an initial rate of 114.4 +/- 16.3 nmol.min-1.mg-1 with the stoichiometry Ca2+: ATP = 1: (3.2-3.7). Calmodulin increased by 30% the initial rate of Ca(2+)-accumulation by the proteoliposomes with reconstituted Ca2+, Mg(2+)-ATPase; 0.1 mM orthovanadate decreased by 80% Ca(2+)-accumulation by this system. Ca2+, Mg(2+)-ATPase reconstituted in liposomes is just Ca(2+)-transporting ATPase of the plasma membrane. Obtained enzyme preparate can be utilised for study of the properties of this important energy-dependent Ca(2+)-transporting system of smooth muscle cell.  相似文献   

20.
In order of estimating some regularities of ethanol direct (effectory) effect to transmembrane calcium metabolism in the myometrium the action of this substance on the energy-dependent Ca(2+)-transporting systems of the uterine myocytes subcellular structures has been studied. The systems of Mg2+, ATP-dependent Ca2+ transport regarding their sensitivity to ethanol inhibitory effect were displayed as satisfying the following sequences: endoplasmic reticulum calcium pump > plasma membrane solubilized Ca2+, Mg2+, ATP-ase > mitochondrial Ca(2+)-accumulating system = plasma membrane calcium pump. Alongside with the latter, the oxytocin-insensitive component of Mg2+, ATP-dependent Ca2+ accumulation in the endoplasmic reticulum was defined to be less resistant to inhibitory effect of ethanol if compared with the oxytocin-sensitive one. On the base of the data received some mechanisms of ethanol effectory action on the intracellular calcium homeostasis in the myometrium cells are under the discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号