首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A S Bloom  L F Tseng 《Peptides》1981,2(3):293-297
The effect of intracerebroventricular injection of beta-endorphin (beta-END) on body temperature of mice was studied at ambient temperatures (Ta) of 10 degrees, 20 degrees and 31 degrees C. Doses between 0.1 and 10.0 microgram/mouse were studied. The lower (less than 1 microgram) doses of beta-END produced a hyperthermia at all Ta's studied. The higher doses of beta-END produced hyper- or hypothermia depending on the Ta. The subcutaneous injection of naloxone (1 mg/kg) antagonized the high dose hypothermic effects, but not the hyperthermic effect of beta-END. These data suggest that there may be different receptors and/or sites of action for high and low doses of beta-END.  相似文献   

2.
1. Colonic and tail skin temperature of the unrestrained Fischer rat were measured immediately after a 90 min exposure to 600 MHz radiofrequency radiation in a waveguide-type system. Ambient temperature (Ta) was maintained at either 20, 28 or 35 degrees C. The specific absorption rate (SAR) in dimensions of W/kg was controlled at a constant level through a feedback control circuit. 2. The SAR needed to elevate colonic and tail skin temperature decreased with increasing Ta. For example, a 0.5 degrees C elevation in colonic temperature occurred at SARs of 4.3, 0.9 and 0.5 W/kg when Ta was maintained at 20, 28 and 35 degrees C, respectively. 3. Data from the present study were combined with data from earlier studies to assess the impact of varying Ta on the thermogenic effect of RF radiation in different species. In species ranging in mass from 0.02 to 3.2 kg, a double logarithmic plot of body mass versus SAR needed to elevate colonic temperature by 0.5 degrees C was linear and inverse with a high goodness of fit (r2 = -0.94). 4. The highly correlated allometric relationship shows that, as body mass decreases, the relative impact of Ta on the thermogenic effect of RF radiation increases.  相似文献   

3.
1. Evaporative heat loss, O2 consumption, CO2 production, and internal body temperature were measured in unanesthetized, unrestrained bobwhite (Colinus virginianus) at specific ambient temperatures (Ta). 2. No significant change in body temperature occurred at any Ta tested, but metabolic heat production (H) increased from 42.17 W/m2 at Ta 35 degrees C to 102.89 W/m2 at Ta 10 degrees C. 3. Evaporative heat loss (E) increased approximately two-fold from Ta 10-35 degrees C, with E/H increasing exponentially over the same temperature range. 4. No significant change in thermal insulation occurred from Ta 10-30 degrees C. 5. Combined convective and radiative heat transfer for the bobwhite was 2.96 W/m2 X C from Ta 10-35 degrees C.  相似文献   

4.
Acclimation of rock pigeon (Columba livia) to high ambient temperature (Ta) 50 degrees C from the time of hatching resulted in a well-developed cutaneous evaporative cooling mechanism (CECM), which became the dominant mechanism for heat dissipation. After the age of 15 days and in adults, acclimated pigeons exposed to 48-60 degrees C Ta could regulate normal body temperature (Tb) without employing either panting or gular fluttering. Respiration rate varied between 36 +/- 12 (SD) and 35 +/- 14 breaths/min at moderate and at extreme high Ta's, respectively. During thermal stress (42, 45, and 47 degrees C) imposed in a metabolic chamber, nonpanting pigeons' heat balance was achieved by adjusting low-level heat production (46.2 +/- 6.8 W/m2) and by use of an efficient CECM that dissipated 145% of the metabolic heat. Tb was regulated between 40.7 +/- 0.5 and 41.8 +/- 0.4 degrees C over a wide range of Ta's (20-56 degrees C). The respiratory evaporative cooling mechanism (RECM) was effective since hatching. The CECM developed approximately 24 h later during the ontogeny of the altricial nestling pigeon. This trait, which exists in many bird species and may be a recent development, possibly evolved as an adaptation to hot environments. In the present study we have brought evidence for a multitrait physiological adaptation that takes preeminence in adjusting the processes involved in maintaining heat balance. This integrative complex creates a powerful, efficient tool for contending with the most extreme thermal conditions.  相似文献   

5.
The Angolan free-tailed bat (Mops condylurus) uses roosts that often exceed 40 degrees C, an ambient temperature (Ta) that is lethal to many microchiropterans. We measured the physiological responses of this species at Ta's from 15 degrees to 45 degrees C. Torpor was commonly employed during the day at the lower Ta, but the bats generally remained euthermic at night, with a mean body temperature (Tb) of 35.2 degrees C. Metabolic rate reflected the pattern of Tb, increasing with falling Ta at night but decreasing during the day. Metabolic rate and evaporative losses were lower in torpid than in euthermic bats. Body temperature increased at each Ta >35 degrees C and was 43 degrees C at Ta of 45 degrees C. At Ta of 40 degrees C bats increased dry thermal conductance and evaporative heat loss compared to lower Ta. At 45 degrees C dry thermal conductance was lower than at 40 degrees C and evaporative heat loss was 132% of metabolic heat production. At high Ta there was only a slight increase in metabolic rate despite the employment of evaporative cooling mechanisms and an increase in Tb. Collectively our results suggest that M. condylurus is well suited to tolerate high Ta, and this may enable it to exploit thermally challenging roost sites and to colonise habitats and exploit food sources where less stressful roosts are limiting.  相似文献   

6.
Condensation of water vapor in the exhaled air stream as it passes over previously cooled membranes of the nasopharynx is thought to be a mechanism that reduces respiratory water loss in mammals and birds. Such a mechanism could be important in the overall water economy of these vertebrates, especially those species occupying desert habitats. However, this hypothesis was originally based on measurements of the temperature of exhaled air (Tex), which provides an estimate of water recovered from exhaled air as a proportion of water added on inhalation but does not yield a quantitative measure of the reduction in total evaporative water loss (TEWL). In this study, we experimentally occluded the nares of crested larks (Galerida cristata), a cosmopolitan species, and desert larks (Ammomanes deserti), a species restricted to arid habitats, to test the hypothesis that countercurrent heat exchange in the nasal passages reduces TEWL. Tex of crested larks increased linearly with air temperature, (Ta): Tex=8.93+0.793xTa. Following Schmidt-Nielsen and based on measurements of Tex, we predicted that crested larks would recover 69%, 49%, 23%, and -5% of the water added to the inhaled air at Ta's of 15 degrees, 25 degrees, 35 degrees, and 45 degrees C, respectively. However, with the nares occluded, crested larks increased TEWL by only 27%, 10%, and 6% at Ta's of 15 degrees, 25 degrees, and 35 degrees C, respectively. At Ta=45 degrees C, TEWL of the crested lark was not affected by blocking the nares. In contrast to our expectation, occluding the nares of desert larks did not affect their TEWL at any Ta.  相似文献   

7.
Six male New Zealand white rabbits were individually exposed to 600 MHz radiofrequency (RF) radiation for 90 min in a waveguide exposure system at an ambient temperature (Ta) of 20 or 30 degrees C. Immediately after exposure, the rabbit was removed from the exposure chamber and its colonic and ear skin temperatures were quickly measured. The whole-body specific absorption rate (SAR) required to increase colonic and ear skin temperature was determined. At a Ta of 20 degrees C the threshold SAR for elevating colonic and ear skin temperature was 0.64 and 0.26 W/kg, respectively. At a Ta of 30 degrees C the threshold SARs were slightly less than at 20 degrees C, with values of 0.26 W/kg for elevating colonic temperature and 0.19 W/kg for elevating ear skin temperature. The relationship between heat load and elevation in deep body temperature shown in this study at 600 MHz is similar to past studies which employed much higher frequencies of RF radiation (2450-2884 MHz). On the other hand, comparison of these data with studies on exercise-induced heat production and thermoregulation in the rabbit suggest that the relationship between heat gain and elevation in body temperature in exercise and from exposure to RF radiation may differ considerably. When combined with other studies, it was shown that the logarithm of the SAR required for a 1.0 degree C elevation in deep body temperature of the rabbit, rat, hamster, and mouse was inversely related to the logarithm of body mass. The results of this study are consistent with the conclusion that body mass strongly influences thermoregulatory sensitivity of the aforementioned laboratory mammals during exposure to RF radiation.  相似文献   

8.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

9.
1. Temperatures of different body surface regions and deep body temperature (Tb) of unrestrained adult Mongolia gerbils exposed to ambient temperatures (Ta) of -10-35 degrees C were measured using infrared (i.r.) thermography and a thermocouple. 2. A strong positive linear relationship between the surface temperature and Ta was found. For Ta range -4-35 degrees C, the slope was lowest for the areas around the eyes and dorsal head, and steepest for the body extremities. At -10 degrees C, surface temperatures of the areas around the eyes and dorsal head were significantly lower then predicted. 3. Tb was lowest at Ta of 25 and 30 degrees C, increased at all temperatures above and up to Ta of -4 degrees C below this range, and began decline at -10 degrees C. 4. The thermoneutral zone (TNZ) is probably between 28 and 32 degrees C, and the absolute lower critical temperature (Tabsl) is probably -4 degrees C. 5. The Mongolian gerbil shows little control of surface temperature and in contrast to larger mammals it has not developed any special thermoregulatory surface areas to regulate heat exchange with its environment. At temperatures below -4 degrees C, this species is unable to maintain the surface temperature of body extremities above the freezing point. 6. It is suggested that the Mongolian gerbil uses mainly behavioral and ecological adaptive strategies to attenuate the stressful effects of its habitat.  相似文献   

10.
To note the effect of temperature on survival, growth and fecundity, newly hatched (zero day old) snails Indoplanorbis exustus were cultured at 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees and 35 degrees C constant temperatures and room temperature (17.5 degrees-32.5 degrees C). Individuals exposed to 10 degrees C died within 3 days while those reared at 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees C and room temperature survived for a period of 6, 27, 18, 16, 12 and 17 weeks respectively. An individual added on an average 0.21 mm and 0.45 mg, 0.35 mm and 7.94 mg, 0.63 mm and 15.5 mg, 0.81 mm and 27.18 mg, 1.07 mm and 41.48 mg and 0.78 mm and 31.2 mg to the shell diameter and body weight respectively at those temperatures per week. The snails cultured at 15 degrees C died prior to attainment of sexual maturity. On an average, an individual produced 31.9 and 582.77, 54.86 and 902.18, 56.01 and 968.45, 49.32 and 798.68 and 62.34 and 1143.97 capsules and eggs respectively at 20 degrees, 25 degrees, 30 degrees, 35 degrees C and room temperature (17.5 degrees-32.5 degrees C).  相似文献   

11.
Effect of nickel chloride on streptozotocin-induced diabetes in rats   总被引:1,自引:0,他引:1  
The potential of nickel chloride to prevent streptozotocin-induced hyperglycemia was tested in rats in vivo. To induce diabetes, streptozotocin (100 mg/kg body weight) was injected as a single dose. Streptozotocin treatment resulted in a significant decrease in plasma insulin and ceruloplasmin, and pancreatic Cu, protein, and Cu-Zn superoxide dismutase activity. In rats treated with nickel chloride (10 mg/kg body weight) and streptozotocin, these values were comparable with those observed in control rats. The results indicate that nickel chloride injected before streptozotocin prevented streptozotocin-induced hyperglycemia, and suggest that the protective effect was related to Cu-Zn superoxide dismutase activity, mediated by copper.  相似文献   

12.
Two kinkajous (Potos flavus, Procyonidae) showed marked nycthemeral variations in their rectal temperature. The mean Tr at night was 38.1 +/- 0.4 degrees C SD and 36.0 +/- 0.6 degrees C SD while resting during the day. Body temperature and O2-consumption were measured at ambient temperatures from 5-35 degrees C. With one exception at 35 degrees C, hypo- or hyperthermia was never observed. At air temperatures above 30 degrees C the bears reacted with behavioural responses. O2-consumption was minimal at Ta's from 23-30 degrees C. The mean basal metabolic rate was 0.316 ml O2 g-1 h-1 which is only 65% of the expected value according to the Kleiber formula. Below 23 degrees C heat production followed the equation : y (ml O2 g-1 h-1) = 0.727--0.018 Ta. The minimal thermal conductance was 90% of the predicted value according to the formula : C (ml O2 g-1 h-1 degrees C-1) = 1.02 W-0.505 (HERREID & KESSEL, 1967). Kinkajous are another distinct exception to the mouse to elephant curve.  相似文献   

13.
After 6 weeks incubation on rice 2 strains of Fusarium crookwellense produced more zearalenone (6060-5010 mg/kg dry wt of culture) at ambient temperature (16-29 degrees C) in daylight than at ambient temperature (18-23 degrees C) in darkness or at controlled temperatures of 11 degrees C, 20 degrees C or 25 degrees C in darkness. Yields at 25 degrees C were low. Incubation at 11 degrees C during the second 3 weeks incubation increased yields only when preliminary incubation had been at 25 degrees C. After 6 weeks incubation at controlled temperatures in darkness, 4 strains produced most zearalenone at 20 degrees C (2460-21 360 mg/kg), 1 strain at 11 degrees C (6570 mg/kg). Yields at a temperature oscillating daily from 10-20 degrees C were less than at 15 degrees C. One of the 5 strains produced appreciable amounts of a-zearlaenol (1645 mg/kg at 20 degrees C) and 2 of nivalenol (340 and 499 mg/kg at 20 degrees C).  相似文献   

14.
The effects of body temperature on histamine-induced bronchoconstriction were investigated in anesthetized, paralyzed, and mechanically ventilated guinea pigs. Four groups of guinea pigs were studied with constant body temperatures of 40, 38, 35, and 32 degrees C, respectively. Histamine was infused for 5 min at a rate of 50 ng.kg-1.s-1. Body cooling from 40 to 32 degrees C augmented the bronchomotor responses to histamine, which eventually rose almost fourfold. The enhancement of histamine-induced bronchoconstriction induced by body cooling was not suppressed by pretreating guinea pigs with 5 mg/kg hexamethonium or 5 mg/kg hexamethonium plus 3 mg/kg atropine; neither was the enhancement of histamine-induced bronchoconstriction suppressed in pithed guinea pigs, demonstrating that the autonomic nervous system is not involved in potentiating bronchoconstriction at low body temperatures. These results suggest that, at low body temperatures, increased airway responsiveness to histamine may be because of some direct effect of temperature on bronchial airway smooth muscle.  相似文献   

15.
Long-acting neuroleptics commonly are used in wildlife management to decrease stress-related mortality in wild animals, but with possible effects on thermoregulation, which may contribute to residual morbidity and mortality. We investigated the effects of haloperidol (0.01, 0.1, 1 mg kg(-1), n=4), zuclopenthixol (0.1, 1, 10 mg kg(-1), n=4) and perphenazine (0.1, 1, 10 mg kg(-1), n=8), as well as control injections of sunflower oil, on body temperature and physical activity of laboratory goats under hot, cold and thermoneutral ambient temperatures. Implanted data loggers continuously recorded abdominal temperature, and data loggers attached externally on the foreleg recorded movement of unrestrained goats, in a climatic chamber at 35 degrees C, 10 degrees C and 22 degrees C. Cycling ambient temperature between 35 degrees C in daytime and 10 degrees C at night time caused a significant increase in amplitude of the circadian rhythm of body temperature in goats given sunflower oil (P=0.0012, unpaired t-test, n=8), but the administration of zuclopenthixol or perphenazine did not affect this change in amplitude (P>0.05, two-way ANOVA, n=4). Mean daily body temperature after administration of zuclopenthixol or perphenazine, and mean daily activity after zuclopenthixol administration, were not significantly different to those after control injections, at any ambient temperature, for the expected duration of drug activity (all P>0.05, two-way ANOVA, n=4). Thermal response indices, and mean activity, during heat, cold or thermoneutral exposure, of goats for 7 h after haloperidol injection, were not significantly different, at any dose or any ambient temperature, to those following control injections (all P>0.05, repeated measures ANOVA, n=4). Long-acting neuroleptics did not impair activity or thermoregulation of goats subjected to inescapable thermal challenges.  相似文献   

16.
In this study, the biosorption of nickel(II) ion on deactivated protonated yeast was investigated as a function of temperature at different initial metal ion concentrations. The effect of temperature on the sorption was more significant at lower nickel(II) ion concentrations compared to higher concentrations. The protonated yeast biomass exhibited the highest nickel(II) ion uptake capacity at 27 degrees C at an initial nickel(II) ion concentration of 400mg/l and an initial pH of 6.75. The biosorption capacity decreased from 9.8 to 9.3mg/g at an initial nickel(II) ion concentration of 400mg/l, while at a lower initial concentration of 100mg/l, it decreased from 8.2 to 4.9 mg/g, as the temperature was increased from 27 degrees C to 60 degrees C. The equilibrium data fit better to the Freundlich and Redlich-Peterson isotherm models compared to the Langmuir model in the concentration range studied (10-400mg/l). Kinetic models applied to the sorption data at different temperatures showed that nickel(II) ion uptake process followed the pseudo-second order rate model and the adsorption rate constants decreased with increasing temperature. The activation energy of biosorption (Ea) was determined to be -13.3 kJ/mol using the pseudo-second order rate constants. The results indicated that the biosorption of nickel(II) ion on to baker's yeast was spontaneous and exothermic in nature. Desorption studies revealed that the protonated yeast biomass can be regenerated using 0.1N HCl and reused.  相似文献   

17.
1. An investigation of the influence of previous thermal and nutritional experience on body temperatures and metabolic rate has been carried out with growing piglets. Littermates were kept, from shortly after birth, at either 10 or 35 degrees C and fed either a high (H) or a low (L) energy intake. At 8 weeks of age the animals were exposed to a series of environmental temperatures of 10, 20, 27 and 35 degrees C for 1.5 hr and their rates of oxygen consumption were determined over the last 45 min. At the end of the session body temperatures were measured. 2. Rectal temperatures measured 24 hr after the start of the last meal were higher at each test temperature in piglets which had been living at 35 degrees C than in those at 10 degrees C. Also, rectal temperatures were higher in those on the H intake for animals which had been living in either the hot or the cold environment. 3. Skin temperature on the back was similar in all groups at any given test temperature although there was a tendency for those on an H intake to have the higher temperatures. Skin temperatures of the legs and ears were higher in the 10H and 10L groups than in the 35H or 35L groups at all the test environmental temperatures; energy intake had little effect. 4. Metabolic rate was greater for the animals on the H than the L intake, for those which had been living at either 10 or 35 degrees C at all the test environmental temperatures. The analysis did not reveal any significant difference related to the overall effect of living temperature, which was independent of energy intake. 5. At thermal neutrality (27 degrees C) there was a significant interaction, between energy intake and normal living temperature, on metabolic rate. Living temperature was found to modify the effect of intake: the difference between the two intakes was greater in those from the cold environment than from the hot.  相似文献   

18.
Decrease of ambient temperature (Ta) leads to the increase of the heart rate (HR) in active ground squirrels C. undulatus by 5.3/min/1 degree C in summer and by 3.8/min/1 degree C in winter. In a hibernation state, the dependence of the HR on Ta was in a good agreement with equation HT = 2.53.exp.(0.1.Ta). On entering into hibernation and on arousal, the HR change outruns the corresponding body temperature (Tb) change by 1.5-2 hours. A maximum HR level (up to 400/min and more) was registered on arousal when Tb reached 17-20 degrees C. A minimal HR level (4-5/min) was observed during hibernation at Ta 2-5 degrees C. The maximum Ta, at witch C. undulatus was hibernating, reached 23-24 degrees C, the HR being 23-25/min.  相似文献   

19.
This study was made to see whether changes in blood flow through the capillaries and arteriovenous anastomoses (AVA's) of the human finger can be measured by noninvasive flowmetry. Total finger blood flow (FBF) was measured by venous occlusion plethysmography; blood flow was measured by a laser-Doppler flowmeter (ADVANCE, ALF-2100, Tokyo, Japan) using probes with optic fiber separations of 0.3 mm (LDF-0.3) and 0.7 mm (LDF-0.7). The maximum sensitivities for LDF-0.3 and LDF-0.7 were at depths of 0.8 and 1.2 mm from the tissue surface respectively. Two series of experiments were performed on separate days. In the first series the test hand was immersed in a water bath whose temperature (Tw) was 25 degrees C at an ambient temperature (Ta) of 25 degrees C. Tw was raised to 35 degrees C (local hand warming), which was then followed by an increase in Ta to 35 degrees C (whole body warming). FBF, LDF-0.3, and LDF-0.7 increased during these thermal stimulations. However, the relationship of FBF to LDF-0.3 showed two different regression lines. In contrast, the relationship of FBF to LDF-0.7 showed a single regression line. In the second series, with Ta at 35 degrees C, the test hand was immersed in a water bath at Tw 35 degrees C. Tw was then raised every 10 min by 2 degrees C steps from 35 to 41 degrees C. At Tw 39-41 degrees C, FBF and LDF-0.7 in the test hand were significantly decreased compared with those at Tw 35 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Delta 9-Tetrahydrocannabinol (20 mg/kg i.p.) and propranolol (20 and 50 mg/kg i.p.) produced marked falls in the rectal temperatures of mice kept at an ambient temperature of 22 degrees C. Propranolol (50 mg/kg i.p.) also decreased the thermogenic activity of brown fat, as measured by a decrease in the level of [3H]GDP binding to mitochondria obtained from mouse interscapular brown adipose tissue. In contrast, delta 9-tetrahydrocannabinol (20 mg/kg i.p.) did not affect mitochondrial GDP binding even though the dose used was one shown previously to depress heat production. GDP binding was also unaffected by this cannabinoid in brown adipose tissue taken from mice that had been kept at 13 degrees C instead of 22 degrees C. In mice kept at 34 degrees C, isoprenaline (0.25 and 1.0 mg/kg s.c.) induced a marked rise in rectal temperature and increased the level of GDP binding to brown fat mitochondria. Propranolol (50 mg/kg i.p.) prevented the hyperthermic response to isoprenaline, the mice becoming hypothermic instead. Delta 9-Tetrahydrocannabinol (20 mg/kg i.p.) had no effect on isoprenaline-induced hyperthermia. We conclude from these data that there is no significant involvement of brown adipose tissue in the hypothermic response of mice to delta 9-tetrahydrocannabinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号