首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Addition of calcium carbonate enhanced ethanol production byZymomonas mobilis ZM4 and a mutant (ZMI2), especially at higher concentrations (200–400 g/L) of glucose and sucrose, as well as at higher temperature (42°C) by the mutant. Calcium and sodium carbonates neutralized the acid produced in the medium and enhanced the ethanol production. The Na salts were less effective in the parent strain and were not favourable for the mutant. Ca2+ ions played a direct role in augmenting ethanol production as evidenced by the effect of calcium chloride at controlled pH (5.5).  相似文献   

2.
Summary Batch and continuous culture studies have been carried out on a strain ofZ.mobilis (ZM6306) which can convert lactose directly to ethanol. Previous strain development has established that thelac operon encoded on the transposon Tn951 can be expressed inZ.mobilis. Using a medium containing 80 g/l glucose and 40 g/l lactose, it was found that strain ZM6306 could convert about 13 g/l lactose to 4 g/l ethanol and 6 g/l galactose in continuous culture. Further lactose conversion is likely with increased cell concentration using a cell recycle system.  相似文献   

3.
Summary Zymomonas mobilis, strain ATCC 10988, was used to evaluate the effects of pH (5.0 to 8.0), temperature (30°C to 40°C), and initial glucose concentration (75 g/l to 150 g/l) on the kinetics of ethanol production from glucose using batch fermentation. Specific ethanol production rate was maximum and nearly constant over a pH range of 6.0 to 7.5. End-of-batch ethanol yield and specific growth rate were insensitive to pH in the range of 5.0 to 7.5. End-of-batch ethanol yield was maximum and nearly constant between 30°C and 37°C but decreased by 24% between 37°C and 40°C. All other kinetic parameters are greatest at 34°C. End-of-batch ethanol yield is maximum at an initial glucose concentration of 100 g/l. Specific growth rate reaches a maximum at 75 g/l, but specific ethanol production rate decreases throughout the range. The optimum initial glucose concentration of 100 g/l gives the highest ethanol yield at a specific ethanol production rate less than 10% below the maximum observed.  相似文献   

4.
Summary Z.mobilis is strain ZM4 was grown on 250 g/l fructose and sucrose media in batch culture and on 100 and 150 g/l sucrose media in continuous culture. With fructose, a significant reduction in the growth rate and the cell yield was apparent although the other kinetic parameters were similar to those previously reported for fermentation of glucose. With sucrose the major differences were a reduction in ethanol yield, (due to levan formation) and a lower final ethanol concentration. Ethanol inhibition of sucrose metabolism occurred at relatively low ethanol concentrations compared to those inhibiting glucose metabolism.  相似文献   

5.
Summary Zymomonas mobilis strain ZM4 was used for ethanol production from fructose (100 g/l) in continuous culture with a mineral (containing Ca pantothenate) or a rich (containing yeast extract) mediium. With both media high conversion yields were observed but the ethanol productivity was limited by the low biomass content of the fermentor. A new flocculent strain of Z.mobilis (ZM4F) was cultivated in a CSTR with an internal settler and showed a maximal productivity of 93 g/l.h (fructose conversion of 80%). When the fructose conversion was 96% an ethanol productivity of 85.6 g/l.h with an ethanol yield of 0.49 g/g (96% of theoretical) was observed.  相似文献   

6.
The effects of temperature, solvents, and cultural conditions on the fermentative physiology of an ethanol-tolerant (56 g/liter at 60°C) and parent strain of Clostridium thermohydrosulfuricum were compared. An ethanol-tolerant mutant was selected by successive transfer of the parent strain into media with progressively higher ethanol concentrations. Physiological differences noted in the mutant included enhanced growth, tolerance to various solvents, and alterations in the substrate range and the fermentation end product ratio. Ethanol tolerance was temperature dependent in the mutant but not in the parent strain. The mutant grew with ethanol concentrations up to 8.0% (wt/vol) at 45°C, but only up to 3.3% (wt/vol) at 68°C. Low ethanol concentration (0.2 to 1.6% [wt/vol]) progressively inhibited the parent strain to where glucose was not fermented at 2.0% (wt/vol) ethanol. Both strains grew and produced alcohols on glucose complex medium at 60°C in the presence of either 5% methanol or acetone, and these solvents when added at low concentration stimulated fermentative metabolism. The mutant produced ethanol at high concentrations and displayed an ethanol/glucose ratio (mole/mole) of 1.0 in media where initial ethanol concentrations were ≤4.0% (wt/vol), whereas when ethanol concentration was changed from 0.1% to 1.6% (wt/vol), the ethanol/glucose ratio for the parent strain changed from 1.6 to 0.6. These data indicate that C. thermohydrosulfuricum strains are tolerant of solvents and that low ethanol tolerance is not a result of disruption of membrane fluidity or glycolytic enzyme activity.  相似文献   

7.
Summary A total of 55 yeast strains selected from 7 genera known to ferment carbohydrates to ethanol were screened for their ability to ferment glucose to ethanol in shaken flask culture at 37°, 40° and 45°C. Yields of more than 50% of the theoretical maximum were obtained with 28 strains at 37°C, but only 12 at 40°C. Only 6 could grow at 45°C, but they produced poor yields. In general Kluyveromyces strains were more thermotolerant than Saccharomyces and Candida strains, but Saccharomyces strains produced higher ethanol yields. The 8 strains with the highest yields at 40°C were evaluated in batch fermentations. Three of these, two Saccharomyces and one Candida, were able to meet minimum commercial targets set at 8% (v/v) ethanol from 14% (w/v) glucose at 40°C.  相似文献   

8.
Summary The fermentation of glucose byClostridium thermosaccharolyticum strains IMG 2811T, 6544 and 6564 was studied in batch culture in a complex medium at different temperatures in defined and free-floating pH conditions. All the strains ferment 5 g glucose.l–1 completely. The yield of the fermentation products turned out to be independent of the incubation temperature for strain IMG 2811T. Strain IMG 6544 produced at 60°C significantly more ethanol and less acetic acid, butyric acid, hydrogen gas and biomass than at lower temperatures. With strain IMG 6564, the opposite effect occurred: ethanol appeared to be the main fermentation product at 45°C; at 60°C less ethanol and more acetic acid, butyric acid and hydrogen gas was formed.Experiments, carried out with strain IMG 6564, at defined pH conditions (between 5.5 and 7) and different temperatures (45, 55 and 60°C) revealed no effect of the incubation temperature, but an important effect of the pH on the product formation. At pH 7, ethanol was the main fermentation product while minor amounts of hydrogen gas, acetic and butyric acid were produced. Lowering the pH gradually to 5.5 resulted in a decrease of ethanol and an increase of biomass, hydrogen gas, acetic, butyric and lactic acids. At pH higher than 7 no growth occurred. Similar conclusions could be drawn for strains IMG 2811T and 6544.  相似文献   

9.
Summary Cassava and sago starch were evaluated for their feasibilities as substrates for ethanol production using Zymomonas mobilis ZM4 strain. Before fermentation, the starch materials were pretreated employing two commercial enzymes, Termamyl (thermostable -amylase) and AMG (amyloglucosidase). Using 2 l/g of Termamyl and 4 l/g of AMG, effective conversion of both cassava and sago starch into glucose was found with substrate concentration up to 30%(w/v) dry substances. Fermentation study performed using these starch hydrolysates as substrates resulted in ethanol yield at an average of 0.48g/g by Z. Mobilis ZM4.  相似文献   

10.
Summary Experiments were performed to investigate growth, ethanol and glycerol production by wild-type strains (RHO) and respiratory-deficient (rho) mutants of Saccharomyces cerevisiae. Furthermore protoplasts were fused in order to enhance the fermentation capacity of a flocculent strain. At high substrate conditions, 150 g/l of saccharose, there is no difference in cell growth. However, at a glucose concentration of 10–20 g/l the mutants grow much slower. After 3 days of incubation at 28° C in a complete medium the viability of the two strains is the same. In minimal medium on the other hand the number of viable cells of the mutant is 100-fold reduced. All mutants tested showed a higher specific activity of alcohol dehydrogenase (ADH I) and an enhanced production of glycerol compared with the wild-type strain. By protoplast fusion a modified flocculent strain was obtained with higher specific activity of ADH I and a reduced biosynthesis of glycerol. However, the yields of ethanol (75–78%) are about the same for the wild-type strain and the rho mutants under aerobic conditions in absence of catabolite repression.  相似文献   

11.
Growth of Zymomonas mobilis ZM4 in media containing sodium acetate was inhibited above 12 g sodium acetate/l at pH 5.0. Following mutagenesis of ZM4, an acetate-tolerant strain was isolated in continuous culture that grew in the presence of 20 g sodium acetate/l at pH 5.0. In continuous culture with complete cell recycle at 30 deg C and pH 5.4 using media containing 110 g glucose/l, the maintenance energy coefficient (m) for the mutant was found to increase from 1.9 g glucose/g cell dry wt.h at 12 g sodium acetate/l up to 3.9 g/g.h at 20 g/l.  相似文献   

12.
Summary A flocculent mutant of Zymomonas mobilis has been isolated and kinetic studies carried out in batch and continuous culture. By comparison with the parent strain the specific rates of glucose uptake and ethanol production were decreased by 20%. Cell recycle and semibatch cultures with the flocculent strain resulted in relatively high productivities (viz. 50 g/l/h). However semibatch culture had the additional advantages of an increased ethanol concentration (viz. 82 g/l) and a more stable and controlled environment for cell separation.  相似文献   

13.
Wei P  Li Z  Lin Y  He P  Jiang N 《Biotechnology letters》2007,29(10):1501-1508
An effective, simple, and convenient method to improve yeast’s multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H2O2, and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 × 107 c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l−1) to SC521 at 30°C with 200 g glucose l−1, and was better than the parent strain at 37°C (72.5 g ethanol l−1), with 300 (111 g ethanol l−1) or with 400 (85 g ethanol l−1) g glucose l−1.  相似文献   

14.
Summary A laboratory-scale, two-stage continuous process for the production of curdlan-type exopolysaccharide has been operated in steady-state for 500hr. Two continuous flow, constant volume fermenters are connected in series. A stable, curdlan-producing strain of Alcaligenes faecalis var myxogenes ATCC 31749 is grown aerobically in a nitrogen-limited chemostat operating near Dmax at 0.24 hr–1. The effluent is introduced directly into a second larger constant volume fermenter which is being simultaneously fed a glucose solution at a fixed rate. Under sub-optimal conditions associated with curdlan production, the observed Qp was 0.05 g curdlan/g cell/hr. At a biomass level of 4 g/L in the second stage, curdlan was present at 10 g DW/L and the volumetric productivity was 0.2 g/g cell/hr. The substrate (glucose) conversion efficiency was 42%. The process is described in patents applied for on behalf of George Weston Ltd. (Toronto, Canada).  相似文献   

15.
Wu M  Tang C  Li J  Zhang H  Guo J 《Carbohydrate research》2011,(14):2149-2155
A parent strain Aspergillus niger LW-1 was mutated by the compound mutagenesis of vacuum microwave (VMW) and ethyl methane sulfonate (EMS). A mutant strain, designated as A. niger E-30, with high- and stable-yield β-mannanase was obtained through a series of screening. The β-mannanase activity of the mutant strain E-30, cultivated on the basic fermentation medium at 32 °C for 96 h, reached 36,675 U/g dried koji, being 1.98-fold higher than that (18,501 U/g dried koji) of the parent strain LW-1. The purified E-30 β-mannanase, a glycoprotein with a carbohydrate content of 19.6%, had an apparent molecular weight of about 42.0 kDa by SDS–PAGE. Its optimal pH and temperature were 3.5 and 65 °C, respectively. It was highly stable at a pH range of 3.5–7.0 and at a temperature of 60 °C and below. The kinetic parameters Km and Vmax, toward locust bean gum and at pH 4.8 and 50 °C, were 3.68 mg/mL and 1067.5 U/mg, respectively. The β-mannanase activity was not significantly affected by an array of metal ions and EDTA, but strongly inhibited by Ag+ and Hg2+. In addition, the hydrolytic conditions of konjak glucomannan using the purified E-30 β-mannanase were optimized as follows: konjak gum solution 240 g/L (dissolved in deionized water), hydrolytic temperature 50 °C, β-mannanase dosage 120 U/g konjak gum, and hydrolytic time 8 h.  相似文献   

16.
Summary Among various antimicrobial plant extracts, chemicals and antibiotics used for simultaneous saccharification and fermentation, penicillin G prevented contamination and did not inhibit amylase activity and growth of the synergistic co-cultures Saccharomyces cerevisiae PH03 and Zymomonas mobilis ZM4 during a 7-day fermentation of paddy malt (25.0%) mash (18.0% dextrose equivalent) to ethanol at 30°C and pH 5.5. The treatment yielded 10.1% (v/v) ethanol from the mash which was significantly more than that of the boiled and fermented mash (9.3% v/v) and equal to that of the mash boiled and fermented (10 2% v/v) after added amylases treatment. Most of the other compounds (kanamycin, streptomycin, polymyxin, tetracycline) had growth inhibitory effect especially on Z.mobilis.  相似文献   

17.
Summary Growth and ethanol production by three strains (MSN77, thermotolerant, SBE15, osmotolerant and wild type ZM4) of the bacterium Zymomonas mobilis were tested in a rich medium containing the hexose fraction from a cellulose hydrolysate (Aspen wood). The variations of yield and kinetic parameters with fermentation time revealed an inhibition of growth by the ethanol produced. This inhibition may result from the increase in medium osmolality due to ethanol formation from glucose.Nomenclature S glucose concentration (g/L) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - Qp volumetric ethanol productivity (g/L.h) - QX volumetric biomass productivity (g/L.h) - YX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

18.
Summary A partial alcohol dehydrogenase, ADH I, deficient mutant, GRF 18-2 of S. cerevisiae has been isolated. The mutant is resistant to allyl alcohol and the spec. activity of ADH I is 15-fold reduced in the mutant. In a batch fermentation the mutant overproduces glycerol. The production is enhanced 6–7 fold compared with the wildtype strain and it amounts to about 40 per cent of the ethanol produced. The yield of ethanol and glycerol is 56 and 24 per cent respectively. Another mutant possibly defect in the gene for ADH II has a reduced capacity to oxidize ethanol.  相似文献   

19.
Summary Cell-free extracts ofZymomonas mobilis were capable of fermenting glucose to ethanol and CO2 when stimulated by arsenate to act as an ATP uncoupler. 2M glucose was completely converted resulting in a final concentration of 16.5 % w/v ethanol. 1 M glucose was completely converted at temperatures up to 50°C. The results demonstrate that the glycolytic enzymes are more resistant to temperature and ethanol than are the living cells.  相似文献   

20.
Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50–55°C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55°C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35°C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55°C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号