首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice of the SJL/J and BALB/cByJ inbred strains are naturally resistant to street rabies virus (SRV) injected via the intraperitoneal route. To determine the cellular mechanism of resistance, monoclonal antibodies specific for CD4+ or CD8+ subsets of T cells were used to deplete the respective cell population in SRV-infected animals. Elimination of CD4+ T-helper cells abrogated the production of immunoglobulin G (IgG) neutralizing antibodies in response to rabies virus infection and reversed the resistant status of SJL/J and BALB/cByJ mice. In contrast, in vivo depletion of CD8+ cytotoxic T cells had no measurable effect on host resistance to SRV. These results indicate that serum neutralizing antibodies of the IgG class are a primary immunological mechanism of defense against rabies virus infection in this murine model of disease. CD8+ cytotoxic T lymphocytes, which have been shown to transfer protection in other rabies virus systems, appear to have no role in protecting mice against intraperitoneally injected SRV.  相似文献   

2.
T cell subsets responsible for clearance of Sendai virus from mouse lungs determined by adoptive transfer of immune spleen cell fractions to infected nude mice. T cells with antiviral activity developed in spleens by 7 days after intranasal infection. Spleen cell fractions depleted of Lyt-2+, Lyt-1+, or L3T4+ cells showed antiviral activity in vivo, although the degree of the activity was lower than that of control whole spleen cells. The antiviral activity of the Lyt-2+ cell-depleted fraction was consistently higher than that of L3T4+ (Lyt-1+)-depleted cells. In vitro cytotoxic activity against Sendai virus-associated, syngeneic lipopolysaccharide-blast cells was detected in stimulated cells from intraperitoneally immunized mice but was lost after depletion of Lyt-2+ cells. Multiple injection of anti-Sendai virus antibody into infected nude mice had no effect on lung virus titer. These results indicate that L3T4+ (Lyt-1+) and Lyt-2+ subsets are cooperatively responsible for efficient clearance of Sendai virus from the mouse lung.  相似文献   

3.
Raccoon poxvirus (RCN) recombinants expressing the rabies virus internal structural nucleoprotein (RCN-N) protected A/WySnJ mice against a lethal challenge with street rabies virus (SRV). Maximum survival was achieved following vaccination by tail scratch and footpad (FP) SRV challenge. RCN-N-vaccinated mice inoculated in the FP with SRV were resistant to infection for at least 54 weeks postvaccination. Protection was also elicited by RCN recombinants expressing the rabies virus glycoprotein (RCN-G). Vaccination with RCN-G evoked rabies virus neutralizing antibody. Rabies virus neutralizing antibody was not detected in RCN-N-vaccinated mice prior to or following SRV infection. Radioimmunoprecipitation assays showed that sera from RCN-N-vaccinated mice which survived SRV infection did not contain antibody to SRV structural protein G, M, or NS. The mechanism(s) of N-induced resistance appears to correlate with the failure of peripherally inoculated SRV to enter the central nervous system (CNS). Support for this correlation with resistance was documented by the observations that SRV-inoculated RCN-N-vaccinated mice did not develop clinical signs of CNS rabies virus infection, infectious SRV was not detected in the spinal cord or brain following FP challenge, and all RCN-N-vaccinated mice died following direct intracranial infection of the CNS with SRV. These results suggest that factors other than anti-G neutralizing antibody are important in resistance to rabies virus and that the N protein should be considered for incorporation with the G protein in recombinant vaccines.  相似文献   

4.
Seven strains of mice were examined to determine why susceptibility differences and variations in clinical central nervous system (CNS) disease occurred among these animals after intraperitoneal inoculation of street rabies virus (SRV). Trace experiments for infectious virus indicated that these differences were associated with restriction of virus replication within the CNS. Limitation of viral replication appeared to correlate with the antibody response in that prominent serum anti-SRV neutralizing antibody titers were detected in resistant strains, whereas susceptible strains produced minimal amounts of antibody until their death. The importance of the immune response was reaffirmed with cyclophosphamide studies in that all resistant SJL/J mice died after immunosuppressive treatment. In contrast, cyclophosphamide-treated SJL/J mice whose immune systems were reconstituted with either unfractionated immune spleen cells or with sera 24 h after SRV inoculation survived a lethal dose of SRV. More importantly, immunosuppressed SJL/J and immunodeficient athymic mice were protected when reconstituted with immune serum 72 h after SRV inoculation, a time in which infectious virus was detected in the spinal cords of some mice but was not present in the peritoneal cavity. Additional studies showed that antibody in the cerebrospinal fluid was unimportant in the resistance of mouse strains which remained clinically asymptomatic, but it appeared to be associated with the survival of mice which developed clinical CNS disease. Furthermore, CNS resistance to intranasal or intracerebral inoculation with challenge virus standard rabies virus developed as early as 5 days post-intraperitoneal inoculation of SRV.  相似文献   

5.
Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, and their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.  相似文献   

6.
Street rabies virus (SRV)-infected T-lymphocyte-deficient (nude) mice, in contrast to euthymic mice, did not develop hindlimb paralysis prior to death. To document the role of T lymphocytes in rabies virus-associated paralysis, 10(8) spleen cells from normal immunocompetent euthymic mice were transferred to nude mice and the recipient mice were challenged with SRV. One hundred percent of the reconstituted mice developed paralysis and died. Depletion of T cells from the donor spleen suspension prior to transfer abrogated the development of paralysis but did not prevent the deaths of the recipient animals. Mice receiving 10(8) rabies virus-immune spleen cells did not become paralyzed and did not die. Nude mice inoculated with either rabies virus-immune or normal mouse serum prior to and following SRV inoculation did not develop paralysis. Immune serum protected the mice, whereas animals inoculated with normal serum died. Central nervous system inflammatory responses in nude mice immunologically reconstituted with normal spleen cells were characterized by diffuse cellular infiltrates in the parenchyma and extensive perivascular cuffing. Perivascular infiltrates included CD8+ and CD4+ T lymphocytes and Mac-1+ macrophage-microglial cells. Inflammatory cells in the parenchyma were limited to CD8+ lymphocytes and Mac-1+ cells. These observations indicate that paralysis of SRV-infected mice is dependent on T lymphocytes. Whether injury leading to paralysis is mediated by T lymphocytes or by an influence of T lymphocytes on macrophage-microglial cells or other cells remains to be determined.  相似文献   

7.
Cell mediated immunity to nonlethal Plasmodium yoelli 17X (PY17X-NL) was examined in the CBA/CaJ mouse by adoptive transfer of sensitized T lymphocyte subsets. In intact mice, PY17X-NL causes a self-limiting infection with parasitemia levels ranging from 10 to 25% of total red blood cells. Upon recovery, mice are refractory to subsequent challenge with the homologous parasite. In T cell-depleted mice, PY17X-NL infections are extremely virulent and result in death of the host after parasitemia levels reach 50% or higher. The transfer of either Lyt-1 T cells or Lyt-2 T cells from immune animals into normal, naive animals produced accelerated recovery to subsequent infection. However, this adoptive transfer of immunity by either subset was dependent upon the presence of an I-J+, Lyt-null cell in the immune population. T cell deprivation precluded the ability of animals to control blood-stage infections. When T cell-depleted mice were reconstituted with naive, Ig-negative (T cell-enriched) spleen cells, parasitemia levels were controlled and the parasites were eliminated. When T cell-deprived animals were reconstituted with naive Lyt-1+2-, Ig-negative spleen cells, they experienced twofold higher parasitemias of longer duration than mice receiving unfractionated cells. Two of six of these Lyt-1 mice died of fulminant infections, suggesting that the presence of naive Lyt-2 cells enhances the degree of protection. Immune Lyt-2 T cells were highly protective in T cell-depleted animals. Protection by sensitized Lyt-1 T cells correlated with the induction of a monocytosis. On the other hand, protection by Lyt-2T cells occurred in the absence of monocytosis. The possibility that the immunity induced by each T cell subset is mediated by a different effector mechanism is discussed.  相似文献   

8.
Studies were performed to attempt to define the T cell subset responsible for resistance to Toxoplasma gondii. A temperature-sensitive mutant (ts-4) strain of T. gondii was used for immunization because it causes infection but does not persist in the host. Immunization with this strain induced marked resistance against lethal challenge infection with virulent strains of T. gondii in mice. The resistance could be transferred to normal recipient mice by i.v. injection of spleen cells from ts-4-immunized mice. Marked inhibition of cyst formation in the recipient mice was also noted. The protective activity of immune spleen cells was removed by pretreatment of the spleen cells with anti-Thy-1.2 and C, indicating that T cells are responsible for the observed protection. Pretreatment of immune spleen cells with anti-Lyt-2.2 and C completely ablated their protective effect; pretreatment with anti-Lyt-1.2 or anti-L3T4 and C had lesser effects on their ability to transfer resistance. The effect of anti-Lyt-1.2 was the same as that obtained with anti-L3T4. This suggested that one T cell subset that is partially responsible for protection has both Lyt-1.2 and L3T4 markers on the cell surface. These results indicate that there are substantial roles for both the Lyt-2+ and Lyt-1+, L3T4 T cell subsets in dual regulation of resistance against toxoplasma infection and that Lyt-2+ T cells are the principal mediator of the resistance.  相似文献   

9.
Previous studies have shown that mice infected i.v. with 6 X 10(5) yeast phase Histoplasma capsulatum (Hc) develop suppressed immune responses during weeks 1 to 4 of infection but that by weeks 8 to 12 of infection these responses return to normal. In this study total and differential cell counts showed that as early as the third day of infection there was a marked reduction in the number of lymphocytes recovered from the peripheral blood, bone marrow, and thymus of infected animals. Concomitantly, there was an increase in the number of splenic lymphocytes. By day 28 both the total and differential cell counts were similar in both infected and normal animals. Flow microfluorometric (FMF) studies comparing the Thy-1.2, Lyt-1, Lyt-2, and surface immunoglobulin (slg) phenotypes of lymphocytes from normal and infected mice were performed. Between days 5 and 7 the thymocytes from infected mice displayed a higher relative fluorescence intensity (RFI) of the Thy-1.2 marker than normal thymocytes, whereas at day 10, the RFI was less than that of normal thymic lymphocytes. Between days 7 and 10 of infection the RFI of the Lyt-2 marker was less on thymocytes from Hc-infected mice; however, there was no change in the Lyt-1 marker. Examination of these lymphocyte markers in blood, spleen, and mesenteric lymph nodes showed that there were decreases in the RFI of both the Thy-1.2 and Lyt-2 between days 5 and 10 of infection. No changes were observed in the Lyt-1 or slg markers. By day 28 there were no differences between the normal and infected mice with respect to any surface marker in any of the organs studied. In other experiments, the effect of adrenalectomy before infection on these surface markers was studied. Absolute numbers of Thy-1.2+, Lyt-1+, and Lyt-2+ cells were significantly increased in the spleen and significantly decreased in the thymus and peripheral blood of infected mice relative to normal controls. These studies suggest that there is a migration of cells from the thymus, blood, and bone marrow to the spleens of mice with disseminated Hc infection.  相似文献   

10.
The role of antigen-specific helper T cells in augmenting the in vivo development of delayed-type hypersensitivity (DTH) responses was investigated. C3H/HeN mice were inoculated i.p. with vaccinia virus to generate virus-reactive helper T cell activity. These vaccinia virus-primed or unprimed mice were subsequently immunized subcutaneously (s.c.) with either trinitrophenyl (TNP)-modified syngeneic spleen cells (TNP-self), vaccinia virus-infected spleen cells (virus-self), or cells modified with TNP subsequent to virus infection (virus-self-TNP). Seven days later, these mice were tested for anti-TNP DTH responses either by challenging them directly with TNP-self into footpads or by utilizing a local adoptive transfer system. The results demonstrated that vaccinia virus-primed mice failed to generate significant anti-TNP DTH responses when s.c. immunization was provided by either virus-self or TNP-self alone. In contrast, vaccinia virus-primed mice, but not unprimed mice, could generate augmented anti-TNP DTH responses when immunized with virus-self-TNP. Anti-vaccinia virus-reactive helper activity was successfully transferred into 600 R x-irradiated unprimed syngeneic mice by injecting i.v. spleen cells from virus-primed mice. These helper T cells were found to be antigen specific and were mediated by Thy-1+, Lyt-1+2- cells. DTH effector cells enhanced by helper T cells were also antigen specific and were of the Thy-1+, Lyt-1+2- phenotype. Furthermore, vaccinia virus-reactive helper T cell activity could be applied to augment the induction of tumor-specific DTH responses by immunization with vaccinia virus-infected syngeneic X5563 tumor cells. T-T cell interaction between Lyt-1+ helper T cells and Lyt-1+ DTH effector T cells is discussed in the light of the augmenting mechanism of in vivo anti-tumor-specific immune responses.  相似文献   

11.
The effect of acute infection with lactic dehydrogenase virus (LDV) on the development of contact sensitivity to DNFB was studied in Balb/c mice. LDV infection inhibited contact sensitivity to DNFB. The extent of inhibition observed depended on the timing of LDV infection relative to the first (sensitization) and last (challenge) antigenic stimulation. The possibility that the observed inhibition of contact sensitivity to DNFB could be due to a depletion of the T-dependent areas of lymphoid tissues during acute LDV infection was considered. Lymph nodes, spleen and thymus from normal animals, and from mice infected with LDV 1 or 2 days previously, were examined histologically. Also, the proportion of T cells to Ig positive cells in cell suspensions of these tissues was determined. Results did not suggest a T cell depletion during acute infection with LDV.  相似文献   

12.
To determine whether rabies viruses replicate in macrophage or macrophage-like cells, several human and murine macrophage-like cell lines, as well as primary cultures of murine bone marrow macrophages, were incubated with the Evelyn-Rokitnicki-Abelseth (ERA) virus and several different street rabies viruses (SRV). ERA rabies virus replicated well in human monocytic U937 and THP-1 cells and murine macrophage IC-21 cells, as well as primary cultures of murine macrophages. Minimal replication was detected in murine monocytic WEHI-3BD- and PU5-1R cells, and ERA virus did not replicate in murine monocytic P388D1 or J774A.1 cells. A tissue culture-adapted SRV of bat origin also replicated in IC-21 and U937 cells. Non-tissue culture-adapted SRV isolated from different animal species, particularly bats, replicated minimally in U937, THP-1, IC-21 cells and primary murine bone marrow macrophages. To determine whether rabies virus replication is dependent upon the state of differentiation of the macrophage-like cell, human promyelocytic HL-60 cells were differentiated with 12-O-tetradecanoylphorbol-13-acetate (TPA). ERA rabies virus replicated in the differentiated HL-60 cells but not in undifferentiated HL-60 cells. Persistent infections were established in macrophage-like U937 cells with ERA rabies virus and SRV, and infectious SRV was isolated from adherent bone marrow cells of mice that had been infected 96 days previously. Virus harvested from persistently infected U937 cells and the adherent bone marrow cells had specifically adapted to each cell. This specificity was shown by the inability of the viruses to infect macrophages other than U937 cells and primary bone marrow macrophages, respectively. Virus titers of the persistently infected U937 cells fluctuated with extended cell passage. After 30 passages, virus released from the cells had lost virulence as shown by its inability to kill intracranially inoculated mice. However, the avirulent virus released from the persistently infected cells was more efficient in infecting and replicating in naive U937 cells than the virus which was used to establish the persistent infection. These results suggest that macrophages may serve as reservoirs of infection in vivo, sequestering virus which may subsequently be activated from its persistent state, resulting in clinical infection and death.  相似文献   

13.
The present paper reports the distribution of lymphoid and non-lymphoid cell types in the thymus of mice. To this purpose, we employed scanning electron microscopy and immunohistology. For immunohistology we used the immunoperoxidase method and incubated frozen sections of the thymus with 1) monoclonal antibodies detecting cell-surface-differentiation antigens on lymphoid cells, such as Thy-1, T-200, Lyt-1, Lyt-2, and MEL-14; 2) monoclonal antibodies detecting the major histocompatibility (MHC) antigens, H-2K, I-A, I-E, and H-2D; and 3) monoclonal antibodies directed against cell-surface antigens associated with cells of the mononuclear phagocyte system, such as Mac-1, Mac-2, and Mac-3. The results of this study indicate that subsets of T lymphocytes are not randomly distributed throughout the thymic parenchyma; rather they are localized in discrete domains. Two major and four minor subpopulations of thymocytes can be detected in frozen sections of the thymus: 1) the majority of cortical thymocytes are strongly Thy-1+ (positive), strongly T-200+, variable in Lyt-1 expression, and strongly Lyt-2+; 2) the majority of medullary thymocytes are weakly Thy-1+, strongly T-200+, strongly Lyt-1+, and Lyt-2- (negative); 3) a minority of medullary cells are weakly Thy-1+, T-200+, strongly Lyt-1+, and strongly Lyt-2+; 4) a small subpopulation of subcapsular lymphoblasts is Thy-1+, T-200+, and negative for the expression of Lyt-1 and Lyt-2 antigens; 5) a small subpopulation of subcapsular lymphoblasts is only Thy-1+ but T-200- and Lyt-; and 6) a small subpopulation of subcapsular lymphoblasts is negative for all antisera tested. Surprisingly, a few individual cells in the thymic cortex, but not in the medulla, react with antibodies directed to MEL-14, a receptor involved in the homing of lymphocytes in peripheral lymphoid organs. MHC antigens (I-A, I-E, H-2K) are mainly expressed on stromal cells in the thymus, as well as on medullary thymocytes. H-2D is also expressed at a low density on cortical thymocytes. In general, anti-MHC antibodies reveal epithelial-reticular cells in the thymic cortex, in a fine dendritic staining pattern. In the medulla, the labeling pattern is more confluent and most probably associated with bone-marrow-derived interdigitating reticular cells and medullary thymocytes. We discuss the distribution of the various lymphoid and non-lymphoid subpopulations within the thymic parenchyma in relation to recently published data on the differentiation of T lymphocytes.  相似文献   

14.
Rabies is a lethal disease caused by neurotropic viruses that are endemic in nature. When exposure to a potentially rabid animal is recognized, prompt administration of virus-neutralizing antibodies, together with active immunization, can prevent development of the disease. However, once the nonspecific clinical symptoms of rabies appear conventional postexposure treatment is unsuccessful. Over the last decade, rabies viruses associated with the silver-haired bat (SHBRV) have emerged as the leading cause of human deaths from rabies in the United States and Canada as a consequence of the fact that exposure to these viruses is often unnoticed. The need to treat SHBRV infection following the development of clinical rabies has lead us to investigate why the immune response to SHBRV fails to protect at a certain stage of infection. We have established that measurements of innate and adaptive immunity are indistinguishable between mice infected with the highly lethal SHBRV and mice infected with an attenuated laboratory rabies virus strain. While a fully functional immune response to SHBRV develops in the periphery of infected animals, the invasion of central nervous system (CNS) tissues by immune cells is reduced and, consequently, the virus is not cleared. Our data indicate that the specific deficit in the SHBRV-infected animal is an inability to enhance blood-brain barrier permeability in the cerebellum and deliver immune effectors to the CNS tissues. Conceivably, at the stage of infection where immune access to the infected CNS tissues is limited, either the provision or the development of antiviral immunity will be ineffective.  相似文献   

15.
The effect of natural killer (NK) cells on the course of acute and persistent murine cytomegalovirus (MCMV) infection was examined by selectively depleting NK cell activity by inoculation of mice with antibody to asialo GM1, a neutral glycosphingolipid present at high concentrations on NK cells. The dose of MCMV required to cause 50% mortality or morbidity in control C57BL/6 mice dropped 4- and greater than 11-fold, respectively, in mice first treated with anti-asialo GM1. NK cell-depleted mice had higher (up to 1,000-fold) virus titers in their lungs, spleens, and livers at days 3, 5, 7, and 9 postinfection. Spleens and livers of control mice were virus-free by day 7 postinfection, and their lungs showed no signs of active infection at any time. In contrast, MCMV had disseminated to the lungs of NK cell-depleted mice by day 5, and these mice still had moderate levels of virus in their lungs, spleens, and livers at day 9. Markedly severe pathological changes were noted in the livers and spleens of NK cell-depleted, MCMV-infected mice. These included ballooning degeneration of hepatocytes and spleen necrosis. MCMV-infected, NK cell-depleted mice had severe spleen leukopenia, and their spleen leukocytes exhibited a significantly lower (up to 13-fold) response to the T cell mitogen concanavalin A when compared with those of uninfected and MCMV-infected controls. It appeared that NK cells exerted their most potent antiviral effect early in the infection, in a pattern correlating with interferon production and NK cell activation; treatment with anti-asialo GM1 later in infection had no effect on virus titers. The relative effect of NK cell depletion on MCMV pathogenesis depended on the injection route of the virus. NK cell depletion greatly augmented MCMV synthesis and pathogenesis in mice inoculated either intravenously or intraperitoneally but had no effect on the course of disease after intranasal inoculation, at any time point examined. One month after intraperitoneal inoculation of virus, NK cell depletion resulted in a six- to eightfold increase in salivary gland virus titers in persistently infected mice, suggesting that NK cells may be important in controlling virus synthesis in the salivary gland during persistent infection. This treatment did not, however, induce dissemination of virus to other organs. These data support the hypothesis that NK cells limit the severity, extent, and duration of acute MCMV infection and that they may also be involved in regulating the persistent infection.  相似文献   

16.
An attempt to define a severe suppression of cell-mediated immunity by street rabies virus infection was undertaken by using the mice lethally and peripherally infected with a street rabies virus (1088 strain). The cell-mediated cytotoxic (CMC) activity of the spleen cells from those mice once slightly increased until day 4 after infection but declined rapidly thereafter until their death on days 10 to 12 after infection. In parallel with a decrease of CMC response of the spleen cells from 1088-infected mice, proliferative response to Con A, IL-2 activity in the culture supernatants of Con A-induced proliferation, responsiveness to exogenously added IL-2 and to Con A to express IL-2R, of those cells became suppressed, and the marked decrease of the total number of spleen cells was observed. Selective depletion of CD4+ and CD8+ cells in the spleens, abnormalities of IL-1 and E-type prostaglandins (PGE2) production or production of inhibitory component able to block IL-2 activity by spleen cells were not observed and these factors did not appear to be associated with the suppression of proliferative response to Con A. However, an apparent association of CD8+ cells in the suppression of differentiation of pre-cytotoxic lymphocytes (CTL) into CTL was demonstrated in the co-culture experiments of the spleen cells from 1088-infected mice with spleen cells of mice infected with an attenuated rabies virus (ERA strain) which can induce higher levels of CMC response. There was no evidence of the productive replication of rabies virus in thymus and spleen of 1088-infected mice. The relationship of these observations to current theories on virus-induced immunosuppression was discussed.  相似文献   

17.
The dynamics of lymphoid cell subpopulations in bronchoalveolar lavage fluid (BALF) and the systemic lymphoid organs of mice after intravenous injection of B16 melanoma cells were examined with a fluorescence-activated cell sorter. The lymphoid cell subpopulations of BALF and mediastinal lymph nodes showed significant changes in numbers and proportions, while those of other lymphoid organs including inguinal lymph nodes, thymus and spleen, showed little change. In week 1, the cells with a Thy-1.2+, Lyt-1+, L3T4-, Lyt-2- phenotype and asialo-Gm1+ cells in BALF significantly increased and L3T4+ cells slightly increased in number. By week 3, the numbers of Lyt-2+ cells in BALF markedly increased in number (by about 90 times) compared with controls. The number of Thy-1.2+ cells in mediastinal lymph nodes also increased significantly by week 3. Mice that had been pretreated with an immunosuppressive dose of cyclophosphamide were also inoculated intravenously with B16 melanoma cells. In these mice, a significantly increased number of pleural tumors developed and the number of Thy-1.2+ cells in BALF was markedly reduced from week 1 to 3. The results indicate that L3T4 and Lyt-2 double negative T-cells and natural killer (NK) cells may be generated and/or mobilized to the lung in an early phase of experimental metastasis of B16 melanoma cells and that at a later stage, when multiple metastases develop, T-cells with a Lyt-2+ phenotype markedly increase, probably as an expression of a host reaction against proliferating metastatic tumor cells.  相似文献   

18.
Roy A  Hooper DC 《Journal of virology》2007,81(15):7993-7998
Silver-haired bat rabies virus (SHBRV) infection induces a strong virus-specific immune response in the periphery of the host, but death is common due to the failure to open the blood-brain barrier (BBB) and deliver immune effectors to central nervous system (CNS) tissues. Mice with an SJL background are less susceptible to lethal infection with rabies viruses. In addition, these animals are known to have reduced hypothalamus-pituitary-adrenal (HPA) axis activity and an elevated capacity to mediate CNS inflammatory responses. We show here that approximately one-half of PLSJL mice survive an SHBRV infection that is invariably lethal for 129/SvEv mice. This difference is associated with the elevated capacity of PLSJL mice to mediate BBB permeability changes in response to the infection. The induction of more extensive BBB permeability and CNS inflammation in these animals results in greater virus clearance and improved survival. On the other hand, treatment of SHBRV-infected PLSJL mice with the steroid hormone dehydroepiandrosterone reduced BBB permeability changes and caused greater mortality. We conclude that the infiltration of immune effectors across the BBB is critical to surviving a rabies virus infection and that HPA axis activity may influence this process.  相似文献   

19.
Wang Y  Zhang SF  Liu Y  Zhang F  Zhang JX  Hu RL 《病毒学报》2011,27(5):442-446
构建表达狂犬病病毒弱毒SRV9糖蛋白(GP)的重组人5型腺病毒,检测其对小鼠的免疫效果。将狂犬病病毒SRV9株GP基因的完整开放阅读框克隆到腺病毒表达系统中的穿梭质粒多克隆位点,构建重组穿梭质粒pac-Ad5CMV-Gs9,以罗氏转染液介导线性化骨架质粒和重组穿梭质粒共转染293AD细胞,细胞病变后取培养物进行PCR鉴定并电镜观察,在293AD细胞上测定病毒滴度。以106 TCID50重组腺病毒腹腔接种昆明小鼠,免疫后不同时段采尾静脉血通过荧光抗体病毒中和试验(FAVN)检测小鼠血清狂犬病中和抗体效价。正确构建重组穿梭质粒pacAd5CMV-Gs9;获得表达狂犬病病毒SRV9株GP蛋白的缺陷型重组人5型腺病毒;病毒滴度达到106 CFU/mL以上;腹腔接种小鼠14d后均产生了抗狂犬病中和抗体,有效保护率达90%。成功获得了表达狂犬病病毒GP基因的重组腺病毒,该腺病毒免疫小鼠可产生保护性中和抗体,为进一步开发新型兽用狂犬病疫苗奠定了物质基础。  相似文献   

20.
These studies assessed the roles of subpopulations of T lymphocytes in inducing and modulating resistance to schistosomiasis and thereby influencing subsequent morbidity. C57BL/6 mice were depleted in vivo of Lyt-1+, Lyt-2+, and L3T4+ cells by the daily administration of monoclonal antibodies. The development of protective immunity, induced by exposure to irradiated Schistosoma mansoni cercariae as expressed in depleted animals, was compared to that demonstrated in undepleted, normal, and congenitally athymic C57BL/6 mice. The development of morbidity was determined by spleen weight, portal pressure and reticuloendothelial system activity. The results indicated that depletion of specific subpopulations of T lymphocytes minimally affected the primary development of parasites; however, depletion strongly influenced the development of resistance to the parasite and subsequent morbidity due to infection. Depletion of T lymphocytes by anti-Lyt-1+ or anti-L3T4+ antibody decreased the development of resistance, antibody and delayed-type hypersensitivity directed against schistosome antigens. Morbidity due to disease was increased. Depletion of Lyt-2+ cells produced opposite changes with augmented resistance and reduced morbidity. Congenitally athymic mice developed minimal resistance and morbidity. Moreover, resistance was inversely related to the morbidity shown by a given animal. These studies indicate that the development of protective immunity to S. mansoni cercariae is regulated by discrete subpopulations of T lymphocytes. The feasibility of decreasing morbidity by increasing specific immunologically mediated resistance is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号