首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The limited efficacy of existing antiviral therapies for influenza--coupled with widespread baseline antiviral resistance--highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD) regimen composed of amantadine, oseltamivir, and ribavirin that is highly efficacious at reducing mortality and weight loss in mouse models of influenza infection. TCAD therapy was superior to dual and single drug regimens in mice infected with drug-susceptible, low pathogenic A/H5N1 (A/Duck/MN/1525/81) and amantadine-resistant 2009 A/H1N1 influenza (A/California/04/09). Treatment with TCAD afforded >90% survival in mice infected with both viruses, whereas treatment with dual and single drug regimens resulted in 0% to 60% survival. Importantly, amantadine had no activity as monotherapy against the amantadine-resistant virus, but demonstrated dose-dependent protection in combination with oseltamivir and ribavirin, indicative that amantadine's activity had been restored in the context of TCAD therapy. Furthermore, TCAD therapy provided survival benefit when treatment was delayed until 72 hours post-infection, whereas oseltamivir monotherapy was not protective after 24 hours post-infection. These findings demonstrate in vivo efficacy of TCAD therapy and confirm previous reports of the synergy and broad spectrum activity of TCAD therapy against susceptible and resistant influenza strains in vitro.  相似文献   

2.
Influenza viruses are seasonally recurring human pathogens. Vaccines and antiviral drugs are available for influenza. However, the viruses, which often change themselves via antigenic drift and shift, demand constant efforts to update vaccine antigens every year and develop new agents with broad-spectrum antiviral efficacy. An animal model is critical for such efforts. While most human influenza viruses are unable to kill BALB/c mice, some strains have been shown to kill DBA/2 mice without prior adaptation. Therefore, in this study, we explored the feasibility of employing DBA/2 mice as a model in the development of anti-influenza drugs. Unlike the BALB/c strain, DBA/2 mice were highly susceptible and could be killed with a relatively low titer (50% DBA/2 lethal dose = 102.83 plaque-forming units) of the A/Korea/01/2009 virus (2009 pandemic H1N1 virus). When treated with a neuraminidase inhibitor, oseltamivir phosphate, infected DBA/2 mice survived until 14 days post-infection. The reduced morbidity of the infected DBA/2 mice was also consistent with the oseltamivir treatment. Taking these data into consideration, we propose that the DBA/2 mouse is an excellent animal model to evaluate antiviral efficacy against influenza infection and can be further utilized for combination therapies or bioactivity models of existing and newly developed anti-influenza drugs.  相似文献   

3.
Several anti-influenza drugs that reduce disease manifestation exist, and although these drugs provide clinical benefits in infected patients, their efficacy is limited by the emergence of drug-resistant influenza viruses. In the current study, we assessed the therapeutic strategy of enhancing the antiviral efficacy of an existing neuraminidase inhibitor, oseltamivir, by coadministering with the leaf extract from Hedera helix L, commonly known as ivy. Ivy extract has anti-inflammatory, antibacterial, antifungal, and antihelminthic properties. In the present study, we investigated its potential antiviral properties against influenza A/PR/8 (PR8) virus in a mouse model with suboptimal oseltamivir that mimics a poor clinical response to antiviral drug treatment. Suboptimal oseltamivir resulted in insufficient protection against PR8 infection. Oral administration of ivy extract with suboptimal oseltamivir increased the antiviral activity of oseltamivir. Ivy extract and its compounds, particularly hedrasaponin F, significantly reduced the cytopathic effect in PR8-infected A549 cells in the presence of oseltamivir. Compared with oseltamivir treatment alone, coadministration of the fraction of ivy extract that contained the highest proportion of hedrasaponin F with oseltamivir decreased pulmonary inflammation in PR8-infected mice. Inflammatory cytokines and chemokines, including tumor necrosis factor-alpha and chemokine (C-C motif) ligand 2, were reduced by treatment with oseltamivir and the fraction of ivy extract. Analysis of inflammatory cell infiltration in the bronchial alveolar of PR8-infected mice revealed that CD11b+Ly6G+ and CD11b+Ly6Cint cells were recruited after virus infection; coadministration of the ivy extract fraction with oseltamivir reduced infiltration of these inflammatory cells. In a model of suboptimal oseltamivir treatment, coadministration of ivy extract fraction that includes hedrasaponin F increased protection against PR8 infection that could be explained by its antiviral and anti-inflammatory activities.  相似文献   

4.
Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants.  相似文献   

5.
目的细胞水平测试奥司他韦、利巴韦林和盐酸金刚乙胺对甲型流感H1N1病毒的抑制或杀伤作用。方法通过在MDCK细胞系和甲型H1N1病毒株间建立药物剂量-效应关系确定导致细胞死亡的效力与抑制病毒复制的效力的比值(治疗指数),测试药物的抗病毒效果。结果奥司他韦、利巴韦林和盐酸金刚乙胺对MDCK细胞的半数中毒浓度分别为(1134.7±186.8)μg/mL、(742.0±76.9)μg/mL、(94.6±1.9)μg/mL,对甲型H1N1病毒的治疗指数(TI)分别为71.19、24.9和3.12。结论奥司他韦对甲型H1N1病毒抑制作用最强,利巴韦林其次,盐酸金刚乙胺对甲型H1N1病毒抑制效果较弱。  相似文献   

6.
Influenza A (H5N1) virus is one of the world's greatest pandemic threats. Neuraminidase (NA) inhibitors, oseltamivir and zanamivir, prevent the spread of influenza, but drug‐resistant viruses have reduced their effectiveness. Resistance depends on the binding properties of NA‐drug complexes. Key residue mutations within the active site of NA glycoproteins diminish binding, thereby resulting in drug resistance. We performed molecular simulations and calculations to characterize the mechanisms of H5N1 influenza virus resistance to oseltamivir and predict potential drug‐resistant mutations. We examined two resistant NA mutations, H274Y and N294S, and one non‐drug‐resistant mutation, E119G. Six‐nanosecond unrestrained molecular dynamic simulations with explicit solvent were performed using NA‐oseltamivir complexes containing either NA wild‐type H5N1 virus or a variant. MM_PBSA techniques were then used to rank the binding free energies of these complexes. Detailed analyses indicated that conformational change of E276 in the Pocket 1 region of NA is a key source of drug resistance in the H274Y mutant but not in the N294S mutant.  相似文献   

7.
The biotechnological method of synthesis of the antiviral drug ribavirin based on the transglycosylation reaction was improved due to the addition of catalytic amounts of sodium arsenate. This approach allows us to hydrolyze the excess natural nucleoside guanosine, a ribose donor, and, hence, made the composition of the reaction mixture less complicated, thus facilitating the process of ribavirin isolation. It was shown that in cell cultures the combination of ribavirin and oseltamivir carboxylate inhibited the replication of the influenza A virus more effectively than each of them alone. Similar results were obtained in experiments on laboratory animals (mouse Balb/c) infected with the influenza A virus H3N2/Aichi/68 strain.  相似文献   

8.
Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals.  相似文献   

9.
The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza.  相似文献   

10.
Influenza A virus poses a great threat to global health, and oseltamivir (trade marked as Tamiflu), which targets influenza surface glycoprotein neuraminidase (NA), is used clinically as a major anti-influenza treatment. However, certain substitutions in NA can render an influenza virus resistant to this drug. In this study, using a lentiviral pseudotyping system, which alleviates the safety concerns of studying highly pathogenic influenza viruses such as avian influenza H5N1, that utilizes influenza surface glycoproteins (hemagglutinin or HA, and NA) and an HIV-core combined with a luciferase reporter gene as a surrogate assay, we first assessed the functionality of NA by measuring pseudovirion release in the absence or presence of oseltamivir. We demonstrated that oseltamivir displays a dose-dependent inhibition on NA activity. In contrast, a mutant NA (H274Y) is more resistant to oseltamivir treatment. In addition, the effects of several previously reported substitution NA mutants were examined as well. Our results demonstrate that this lentivirus-based pseudotyping system provides a quick, safe, and effective way to assess resistance to neuraminidase inhibitors. And we believe that as new mutations appear in influenza isolates, their impact on the effectiveness of current and future anti-NA can be quickly and reliably evaluated by this assay.  相似文献   

11.
Ethanolic extracts of 20 medicinal plants were screened for influenza virus NA inhibition and in vitro antiviral activities using MDCK cells in an MTT assay. The vaccine proteins of influenza virus A/New Caledonia/20/99 (H1N1), mouse-adapted influenza virus A/Guizhou/54/89 (A/G)(H3N2) and mouse-adapted influenza virus B/Ibaraki/2/85 (B/I) were used in the NA inhibition assay, and mouse-adapted influenza viruses A/PR/8/34 (H1N1), A/G and B/I were used in the in vitro antiviral assay. The results of the in vitro antiviral assay indicated that the A/G virus was the most susceptible and an extract of the leaf of CS possessed the highest in vitro anti-A/G virus activity (41.98%). Therefore, the A/G virus and the CS extract were selected for studying in vivo anti-influenza virus activity. BALB/c mice were treated with CS extract (100 mg/kg per day, 5 times) orally from 4 hr before to 4 days after infection. CS extract elicited significant production of anti-influenza virus IgG1 antibody in BAW and increased mouse weight compared to oseltamivir (0.1 mg/kg per day) on day 19 or water on days 17–19 of infection. Moreover, CS extract produced a higher anti-influenza virus IgA antibody level in BAW compared to oseltamivir, and a tendency towards an increase in anti-influenza virus IgA compared to water was shown. The results suggest that CS extract has a protective effect against influenza virus infection.  相似文献   

12.
H5N1 is a subtype of the influenza A virus that can cause disease in humans and many other animal species. Oseltamivir (Tamiflu) is a potent and selective antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase (NA), a flu protein responsible for the release and spread of the progeny virions. However, oseltamivir resistance has become a critical problem. In particular, influenza strains with a R292K NA mutation are highly resistant to the oseltamivir. Though the biological functions of the mutations have previously been characterized, the structural basis behind the reduced catalytic activity and reduced protein level is not clear. In this study, molecular docking and molecular dynamics (MD) approach were employed to investigate the structural and dynamical effects throughout the protein structure and specifically, at the drug-binding pocket. Furthermore, potential of mean force was analyzed using explicit solvent MD simulations with the umbrella sampling method to explore the free energy of binding. It is believed that this study provides valuable guidance for the resistance management of oseltamivir and designing of more potent antiviral inhibitor.  相似文献   

13.
Owing to its unique function in assisting the release of newly formed virus particles from the surface of an infected cell, neuraminidase, an antigenic glycoprotein enzyme, is a main target for drug design against influenza viruses. The group-1 neuraminidase of influenza virus possesses a 150-cavity, which is adjacent to the active pocket, and which renders conformational change from the ‘open’ form to the ‘closed’ form when the enzyme is binding with a ligand. Using AutoGrow evolutionary algorithm, one very unique fragment is screened out from the fragment databases by exploiting additional interactions with the 150-cavity. Subsequently, three derivatives were constructed by linking the unique fragment to oseltamivir at its three different sites. The three derivatives thus formed show much stronger inhibition power than oseltamivir, and hence may become excellent candidates for developing new and more powerful drugs for treating influenza. Or at the very least, the findings may stimulate new strategy or provide useful insights for working on the target vitally important to the health of human beings.  相似文献   

14.
Influenza epidemics cause numerous deaths and millions of hospitalizations each year. Because of the alarming emergence of resistance to anti-influenza drugs, there is a need to identify new naturally occurring antiviral molecules. We tested the hypothesis that pomegranate polyphenol extract (PPE) has anti-influenza properties. Using real time PCR, plaque assay, and TCID 50% hemagglutination assay, we have shown that PPE suppresses replication of influenza A virus in MDCK cells. PPE inhibits agglutination of chicken red blood cells (cRBC) by influenza virus and is virucidal. The single-cycle growth conditions indicated that independent of the virucidal effect PPE also inhibits viral RNA replication. PPE did not alter virus ribonucleoprotein (RNP) entry into nucleus or translocation of virus RNP from nucleus to cytoplasm in MDCK cells. We evaluated four major Polyphenols in PPE (ellagic acid, caffeic acid, luteolin, and punicalagin) and demonstrated that punicalagin is the effective, anti-influenza component of PPE. Punicalagin blocked replication of the virus RNA, inhibited agglutination of chicken RBC's by the virus and had virucidal effects. Furthermore, the combination of PPE and oseltamivir synergistically increased the anti-influenza effect of oseltamivir. In conclusion, PPE inhibited the replication of human influenza A/Hong Kong (H3N2) in vitro. Pomegranate extracts should be further studied for therapeutic and prophylactic potential especially for influenza epidemics and pandemics.  相似文献   

15.
The recent H1N1 influenza pandemic has attracted worldwide attention due to the high infection rate. Oseltamivir is a new class of anti-viral agent approved for the treatment and prevention of influenza infections. The principal target for this drug is a virus surface glycoprotein, neuraminidase (NA), which facilitates the release of nascent virus and thus spreads infection. Until recently, only a low prevalence of neuraminidase inhibitor (NAI) resistance (<1 %) had been detected in circulating viruses. However, there have been reports of significant numbers of A (H1N1) influenza strains with a N294S neuraminidase mutation that was highly resistant to the NAI, oseltamivir. Hence, in the present study, we highlight the effect of point mutation-induced oseltamivir resistance in H1N1 subtype neuraminidases by molecular simulation approach. The docking analysis reveals that mutation (N294S) significantly affects the binding affinity of oseltamivir with mutant type NA. This is mainly due to the decrease in the flexibility of binding site residues and the difference in prevalence of hydrogen bonds in the wild and mutant structures. This study throws light on the possible effects of drug-resistant mutations on the large functionally important collective motions in biological systems.  相似文献   

16.

Background

The urgent medical need for innovative approaches to control influenza is emphasized by the widespread resistance of circulating subtype H1N1 viruses to the leading antiviral drug oseltamivir, the pandemic threat posed by the occurrences of human infections with highly pathogenic avian H5N1 viruses, and indeed the evolving swine-origin H1N1 influenza pandemic. A recently discovered class of human monoclonal antibodies with the ability to neutralize a broad spectrum of influenza viruses (including H1, H2, H5, H6 and H9 subtypes) has the potential to prevent and treat influenza in humans. Here we report the latest efficacy data for a representative antibody of this novel class.

Methodology/Principal Findings

We evaluated the prophylactic and therapeutic efficacy of the human monoclonal antibody CR6261 against lethal challenge with the highly pathogenic avian H5N1 virus in ferrets, the optimal model of human influenza infection. Survival rates, clinically relevant disease signs such as changes in body weight and temperature, virus replication in lungs and upper respiratory tract, as well as macro- and microscopic pathology were investigated. Prophylactic administration of 30 and 10 mg/kg CR6261 prior to viral challenge completely prevented mortality, weight loss and reduced the amount of infectious virus in the lungs by more than 99.9%, abolished shedding of virus in pharyngeal secretions and largely prevented H5N1-induced lung pathology. When administered therapeutically 1 day after challenge, 30 mg/kg CR6261 prevented death in all animals and blunted disease, as evidenced by decreased weight loss and temperature rise, reduced lung viral loads and shedding, and less lung damage.

Conclusions/Significance

These data demonstrate the prophylactic and therapeutic efficacy of this new class of human monoclonal antibodies in a highly stringent and clinically relevant animal model of influenza and justify clinical development of this approach as intervention for both seasonal and pandemic influenza.  相似文献   

17.
Undaria pinnatifida, an edible brown alga, contains fucoidan (FuC), a sulfated polysaccharide, that inhibited the in vitro replication of influenza A virus, and stimulated both innate and adaptive immune defense functions in virus-infected mice. In the present study, the effects of oral administration of FuC were evaluated on influenza virus infection in immunocompetent and immunocompromised mice, where the efficacy of FuC was demonstrated in reducing viral replication, decreasing weight loss and mortality, and prolonging survival. Oral FuC resulted in increased neutralizing antibody production in the mucosa and blood. In contrast, while suppressing virus yields in mice more markedly than FuC, oseltamivir significantly reduced the neutralizing antibody titers in both the mucosa and blood. In immunocompromised mice, drug-resistant viruses frequently recovered after oseltamivir treatment; no resistant viruses were isolated from FuC-treated mice. FuC could be a candidate for the development of new therapeutic options including its combination with neuraminidase inhibitors such as oseltamivir.  相似文献   

18.
Like the histidine-to-tyrosine substitution at position 274 in neuraminidase (NA H274Y), an asparagine-to-serine mutation at position 294 in this protein (NA N294S) confers oseltamivir resistance to highly pathogenic H5N1 influenza A viruses. However, unlike viruses with the NA H274Y mutation, the properties of viruses possessing NA N294S are not well understood. Here, we assessed the effect of the NA N294S substitution on the replication and pathogenicity of human H5N1 viruses and on the efficacy of the NA inhibitors oseltamivir and zanamivir in mouse and ferret models. Although NA N294S-possessing H5N1 viruses were attenuated in mice and ferrets compared to their oseltamivir-sensitive counterparts, one of the infected ferrets died from systemic infection, demonstrating the potential lethality in ferrets of oseltamivir-resistant H5N1 viruses with the NA N294S substitution. The efficacy of oseltamivir, but not that of zanamivir, against an NA N294S-possessing virus was substantially impaired both in ferrets and in vitro. These results demonstrate the considerable pathogenicity of NA N294S substitution-possessing H5N1 viruses and underscore the importance of monitoring the emergence of the NA N294S mutation in circulating H5N1 viruses.  相似文献   

19.
Widespread resistance among circulating influenza A strains to at least one of the anti-influenza drugs is a major public health concern. A triple combination antiviral drug (TCAD) regimen comprised of amantadine, oseltamivir, and ribavirin has been shown to have synergistic and broad spectrum activity against influenza A strains, including drug resistant strains. Here, we used mathematical modeling along with three different experimental approaches to understand the effects of single agents, double combinations, and the TCAD regimen on resistance in influenza in vitro, including: 1) serial passage at constant drug concentrations, 2) serial passage at escalating drug concentrations, and 3) evaluation of the contribution of each component of the TCAD regimen to the suppression of resistance. Consistent with the modeling which demonstrated that three drugs were required to suppress the emergence of resistance in influenza A, treatment with the TCAD regimen resulted in the sustained suppression of drug resistant viruses, whereas treatment with amantadine alone or the amantadine-oseltamivir double combination led to the rapid selection of resistant variants which comprised ~100% of the population. Furthermore, the TCAD regimen imposed a high genetic barrier to resistance, requiring multiple mutations in order to escape the effects of all the drugs in the regimen. Finally, we demonstrate that each drug in the TCAD regimen made a significant contribution to the suppression of virus breakthrough and resistance at clinically achievable concentrations. Taken together, these data demonstrate that the TCAD regimen was superior to double combinations and single agents at suppressing resistance, and that three drugs at a minimum were required to impede the selection of drug resistant variants in influenza A virus. The use of mathematical modeling with multiple experimental designs and molecular readouts to evaluate and optimize combination drug regimens for the suppression of resistance may be broadly applicable to other infectious diseases.  相似文献   

20.
The ferret is a suitable small animal model for preclinical evaluation of efficacy of antiviral drugs against various influenza strains, including highly pathogenic H5N1 viruses. Rigorous pharmacokinetics/pharmacodynamics (PK/PD) assessment of ferret data has not been conducted, perhaps due to insufficient information on oseltamivir PK. Here, based on PK data from several studies on both uninfected and influenza-infected groups (i.e., with influenza A viruses of H5N1 and H3N2 subtypes and an influenza B virus) and several types of anesthesia we developed a population PK model for the active compound oseltamivir carboxylate (OC) in the ferret. The ferret OC population PK model incorporated delayed first-order input, two-compartment distribution, and first-order elimination to successfully describe OC PK. Influenza infection did not affect model parameters, but anesthesia did. The conclusion that OC PK was not influenced by influenza infection must be viewed with caution because the influenza infections in the studies included here resulted in mild clinical symptoms in terms of temperature, body weight, and activity scores. Monte Carlo simulations were used to determine that administration of a 5.08 mg/kg dose of oseltamivir phosphate to ferret every 12 h for 5 days results in the same median OC area under the plasma concentration-time curve 0–12 h (i.e., 3220 mg h/mL) as that observed in humans during steady state at the approved dose of 75 mg twice daily for 5 days. Modeling indicated that PK variability for OC in the ferret model is high, and can be affected by anesthesia. Therefore, for proper interpretation of PK/PD data, sparse PK sampling to allow the OC PK determination in individual animals is important. Another consideration in appropriate design of PK/PD studies is achieving an influenza infection with pronounced clinical symptoms and efficient virus replication, which will allow adequate evaluation of drug effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号