首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigating macro-geographical genetic structures of animal populations is crucial to reconstruct population histories and to identify significant units for conservation. This approach may also provide information about the intraspecific flexibility of social systems. We investigated the history and current structure of a large number of populations in the communally breeding Bechstein's bat ( Myotis bechsteinii ). Our aim was to understand which factors shape the species' social system over a large ecological and geographical range. Using sequence data from one coding and one noncoding mitochondrial DNA region, we identified the Balkan Peninsula as the main and probably only glacial refugium of the species in Europe. Sequence data also suggest the presence of a cryptic taxon in the Caucasus and Anatolia. In a second step, we used seven autosomal and two mitochondrial microsatellite loci to compare population structures inside and outside of the Balkan glacial refugium. Central European and Balkan populations both were more strongly differentiated for mitochondrial DNA than for nuclear DNA, had higher genetic diversities and lower levels of relatedness at swarming (mating) sites than in maternity (breeding) colonies, and showed more differentiation between colonies than between swarming sites. All these suggest that populations are shaped by strong female philopatry, male dispersal, and outbreeding throughout their European range. We conclude that Bechstein's bats have a stable social system that is independent from the postglacial history and location of the populations. Our findings have implications for the understanding of the benefits of sociality in female Bechstein's bats and for the conservation of this endangered species.  相似文献   

2.
By definition, parasitic organisms are strongly dependant on their hosts, and for a great majority, this dependence includes host-to-host transmission. Constraints imposed by the host's spatial distribution and demography, in combination with those of the parasite, can lead to a metapopulation structure, where parasite populations are highly stochastic (i.e. prone to frequent extinctions and re-colonizations) and where drift becomes a major force shaping standing genetic variation. This, in turn, will directly affect the observed population structure, along with the ability of the parasite to adapt (or co-adapt) to its host. However, only a specific consideration of temporal dynamics can reveal the extent to which drift shapes parasite population structure; this is rarely taken into account in population genetic studies of parasitic organisms. The study by Bruyndonckx et al. in this issue of Molecular Ecology does just this and, in doing so, illustrates how a comparison of host–parasite co-structures in light of temporal dynamics can be particularly informative for understanding the ecological and evolutionary constraints imposed by the host. More specifically, the authors examine spatial and temporal population genetic data of a parasitic mite Spinturnix bechsteini that exclusively exploits the Bechstein's bat Myotis bechsteinii and consider these data in relation to host–parasite life histories and the population structure of the host.  相似文献   

3.
Given the intimate association in host–parasite systems, parasites are expected to initiate their own reproduction when vulnerable hosts become abundant and/or when adult hosts are less resistant. In this study, we examined the variation in the intensities of a blood-sucking mite ( Spinturnix myoti , Acarina) with respect to the reproductive cycle and immunocompetence of its host, the greater mouse-eared bat Myotis myotis . Reproductive, pregnant females were less immunocompetent and harboured more parasites than nonreproductive females, whilst, during lactation, immunocompetence was positively associated with female body mass. There was a dramatic increase in the T-cell response of gravid females with the advancement of gestation, which coincided with a diminution of individual parasite loads and a progressive switch of parasites from adults to juveniles. The latter not only harboured greater numbers of mites than adult female bats, but they also exhibited gravid parasites in higher proportions, indicating that juvenile hosts are more attractive for parasite reproduction than adult females.  相似文献   

4.
During autumn 'swarming', large numbers of temperate bats chase each other in and around underground sites. Swarming has been proposed to be a mating event, allowing interbreeding between bats from otherwise isolated summer colonies. We studied the population structure of the Natterer's bat (Myotis nattereri), a swarming species in northern England, by sampling bats at seven sites in two swarming areas and at 11 summer colonies. Analysis of molecular variance (amova) and genetic assignment analyses showed that the swarming areas (60 km apart) support significantly different populations. A negative correlation was found between the distance of a summer colony from a swarming area and the assignment of bats to that area. High gene diversity was found at all sites (HE = 0.79) suggesting high gene flow. This was supported by a low FST (0.017) among summer colonies and the absence of isolation by distance or substructure among colonies which visit one swarming area. The FST, although low, was significantly different from zero, which could be explained by a combination of female philopatry and male-mediated gene flow through mating at swarming sites with bats from other colonies. Modelling suggested that if effective size of the summer colonies (Ne) was low to moderate (10-30), all mating must occur at the swarming sites to account for the observed FST. If the Ne was higher (50), in addition to random mating during swarming, there may be nonrandom mating at swarming sites or some within-colony mating. Conservation of swarming sites that support potentially large populations is discussed.  相似文献   

5.
Acrocomia aculeata is a perennial, fruit-producing palm tree, native to tropical forests. Its fruits have spurred interest because of their significant potential for use in the cosmetic industry and as feedstock for biofuel. In the present study, the genetic structure and mating system in Acrocomia aculeata were analyzed, using eight nuclear micro-satellite loci and samples from São Paulo and Minas Gerais states, Brazil. By means of Bayesian analysis, these populations were clustered into two or three groups. A high multilocus outcrossing rate suggests that outcrosses were predominant, although a certain degree of biparental inbreeding also occurred. Thus, although monoecious and self-compatible, there is every indication that A. aculeata bears a mixed reproductive system, with a predominance of outcrossing. Given the genetic structure revealed hereby, future conservation strategies and germplasm collecting should be focussed on sampling and preserving individuals from different clusters.  相似文献   

6.
Ectoparasitism may be recognized as one of the main costs of coloniality, but little is known about how it affects the fitness and social structure of bats, the most gregarious of mammals. We studied these issues using the colonial bat Miniopterus schreibersii and its haematophagous parasitic mite Spinturnix psi as a model. Body condition is an important indicator of individual fitness that is potentially affected by ectoparasitism. Thus, we measured host body condition and mite loads in a total of 969 bats throughout the annual cycle. Mites were rare while hosts hibernated, increased in abundance in spring and peaked during nursing season of bats, when they were particularly abundant on lactating females and young bats. This strong seasonal variation in mite loads is related to the reproductive cycle of mites, which in turn appears to be synchronized with the reproductive cycle of their hosts. Mite loads and the condition of bats were negatively correlated, and information available suggests that this may be due to an effect of parasitism, although other possible causes for this trend cannot be excluded. However, a negative correlation was only observed during the bat's nursing season, when mites were most abundant, and heavily parasitized bats lost about 10% of their weight. Mite parasitism did not seem to be a significant disadvantage of coloniality, except in nurseries, where it might impose some costs. However, as females and young usually aggregate in these colonies, we presume that for them such costs are probably offset by advantages of group living. Adult males, however, are usually absent from nurseries, which may be a strategy to minimize mite parasitism. Overall, the results suggest that ectoparasitism may play a role in determining the social structure of M. schreibersii and of many other temperate bats that have similar life cycles and ectoparasitic loads.  相似文献   

7.
We characterized the population genetic structure of the Australian social spider Diaea ergandros using polymorphic allozyme markers. Our main objectives were to understand the social organization of D. ergandros and discern patterns of gene flow across distantly separated geographical areas. Spiders were sampled from nests located within 100 m wide locales, which were distributed within larger 50 km wide regions. Our results indicated that nestmates could have been produced by a single mother and father in 88.9% of D. ergandros nests. The remainder of nests contained spiders that were probably produced by polyandrous females or were immigrants from foreign nests. Nestmate relatedness was relatively high (r = 0.44) and did not differ significantly between the sexes or among juvenile, subadult and adult life stages. We also discovered that D. ergandros populations were highly structured, with significant differentiation detected among locales (FLR = 0.23) and regions (FRT = 0.081). Spiders within locales were also substantially inbred (FIL = 0.15). Overall, our data show that significant population subdivision exists in D. ergandros populations, and we suggest that the poor dispersal ability of Diaea spiders can account for the observed genetic structure.  相似文献   

8.
Population subdivision into behaviorally cohesive kin groups influences rates of inbreeding and genetic drift and has important implications for the evolution of social behavior. Here we report the results of a study designed to test the hypothesis that harem social structure promotes inbreeding and genetic subdivision in a population with overlapping generations. Genetic consequences of harem social structure were investigated in a natural population of a highly polygynous fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae), in western India. The partitioning of genetic variance within and among breeding groups was assessed using 10-locus microsatellite genotypes for 431 individually marked bats. Genetic analysis of the C. sphinx study population was integrated with field data on demography and social structure to determine the specific ways in which mating, dispersal, and new social group formation influenced population genetic structure. Microsatellite data revealed striking contrasts in genetic structure between consecutive offspring cohorts and between generations. Relative to the 1998 (dry-season) offspring cohort, the 1997 (wet-season) cohort was characterized by a more extensive degree of within-group heterozygote excess (F(IS) = -0.164 vs. -0.050), a greater degree of among-group subdivision (F(ST) = 0.123 vs. 0.008), and higher average within-group relatedness (r = 0.251 vs. 0.017). Differences in genetic structure between the two offspring cohorts were attributable to seasonal differences in the number and proportional representation of male parents. Relative to adult age-classes, offspring cohorts were characterized by more extensive departures from allelic and genotypic equilibria and a greater degree of genetic subdivision. Generational differences in F-statistics indicated that genetic structuring of offspring cohorts was randomized by natal dispersal prior to recruitment into the breeding population. Low relatedness among harem females (r = 0.002-0.005) was primarily attributable to high rates of natal dispersal and low rates of juvenile survivorship. Kin selection is therefore an unlikely explanation for the formation and maintenance of behaviorally cohesive breeding groups in this highly social mammal.  相似文献   

9.
Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that in addition to the obvious impacts of reduced recruitment, patch recolonization and increased genetic drift, the isolation of populations in habitat patches may cause changes in breeding behaviour that contribute to the negative impacts of habitat fragmentation.  相似文献   

10.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

11.
Obligatory social parasites, such as ant species that need colonies of other ant species for reproduction, are rare and many of them are classified as vulnerable. This is especially the case with highly adapted permanent inquilines that are specialised on one or a few host species. Their rarity may be due to reduced dispersal abilities, as a result of reduced body size, altered wing morphology, and curtailed nuptial flight, eventually leading to inbreeding. Furthermore, the host populations may differ in their ability to resist the parasite, yet the conditions of successful parasite invasion are largely unknown. Here we investigated the population structure of the inquiline ant Plagiolepis xene and its host P. pygmaea, using microsatellite data. Genetic differentiation, inbreeding, the effective population size and nest kin structure were analysed. We found that populations of P. xene are established by a single or at most a few individuals, and that the populations were genetically highly differentiated. However, within individual host populations the parasite is able to maintain panmixia, although data on the host suggests that the local distribution of the parasite also follows patterns of substructuring in the host population. Altogether our results suggest that inquiline parasite populations are genetically highly vulnerable.  相似文献   

12.
Variance in reproductive success is a primary determinant of genetically effective population size (Ne), and thus has important implications for the role of genetic drift in the evolutionary dynamics of animal taxa characterized by polygynous mating systems. Here we report the results of a study designed to test the hypothesis that polygynous mating results in significantly reduced Ne in an age-structured population. This hypothesis was tested in a natural population of a harem-forming fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae), in western India. The influence of the mating system on the ratio of variance Ne to adult census number (N) was assessed using a mathematical model designed for age-structured populations that incorporated demographic and genetic data. Male mating success was assessed by means of direct and indirect paternity analysis using 10-locus microsatellite genotypes of adults and progeny from two consecutive breeding periods (n = 431 individually marked bats). Combined results from both analyses were used to infer the effective number of male parents in each breeding period. The relative proportion of successfully reproducing males and the size distribution of paternal sibships comprising each offspring cohort revealed an extremely high within-season variance in male mating success (up to 9.2 times higher than Poisson expectation). The resultant estimate of Ne/N for the C. sphinx study population was 0.42. As a result of polygynous mating, the predicted rate of drift (1/2Ne per generation) was 17.6% higher than expected from a Poisson distribution of male mating success. However, the estimated Ne/N was well within the 0.25-0.75 range expected for age-structured populations under normal demographic conditions. The life-history schedule of C. sphinx is characterized by a disproportionately short sexual maturation period scaled to adult life span. Consequently, the influence of polygynous mating on Ne/N is mitigated by the extensive overlap of generations. In C. sphinx, turnover of breeding males between seasons ensures a broader sampling of the adult male gamete pool than expected from the variance in mating success within a single breeding period.  相似文献   

13.
Hymenoscyphus fraxineus mitovirus 1 (HfMV1) occurs in the fungus Hymenoscyphus fraxineus, an introduced plant pathogen responsible for the devastating ash dieback epidemic in Europe. Here, we explored the prevalence and genetic structure of HfMV1 to elucidate the invasion history of both the virus and the fungal host. A total of 1298 H. fraxineus isolates (181 from Japan and 1117 from Europe) were screened for the presence of this RNA virus and 301 virus‐positive isolates subjected to partial sequence analysis of the viral RNA polymerase gene. Our results indicate a high mean prevalence (78.7%) of HfMV1 across European H. fraxineus isolates, which is supported by the observed high transmission rate (average 83.8%) of the mitovirus into sexual spores of its host. In accordance with an expected founder effect in the introduced population in Europe, only 1.1% of the Japanese isolates were tested virus positive. In Europe, HfMV1 shows low nucleotide diversity but a high number of haplotypes, which seem to be subject to strong purifying selection. Phylogenetic and clustering analysis detected two genetically distinct HfMV1 groups, both present throughout Europe. This pattern supports the hypothesis that only two (mitovirus‐carrying) H. fraxineus individuals were introduced into Europe as previously suggested from the bi‐allelic nature of the fungus. Moreover, our data points to reciprocal mating events between the two introduced individuals, which presumably initiated the ash dieback epidemic in Europe.  相似文献   

14.
The origin of eusociality in haplo-diploid organisms such as Hymenoptera has been mostly explained by kin selection. However, several studies have uncovered decreased relatedness values within colonies, resulting primarily from multiple queen matings (polyandry) and/or from the presence of more than one functional queen (polygyny). Here, we report on the use of microsatellite data for the investigation of sociogenetic parameters, such as relatedness, and levels of polygyny and polyandry, in the ant Pheidole pallidula. We demonstrate, through analysis of mother-offspring combinations and the use of direct sperm typing, that each queen is inseminated by a single male. The inbreeding coefficient within colonies and the levels of relatedness between the queens and their mate are not significantly different from zero, indicating that matings occur between unrelated individuals. Analyses of worker genotypes demonstrate that 38% of the colonies are polygynous with 2-4 functional queens, and suggest the existence of reproductive skew, i.e. unequal respective contribution of queens to reproduction. Finally, our analyses indicate that colonies are genetically differentiated and form a population exhibiting significant isolation-by-distance, suggesting that some colonies originate through budding.  相似文献   

15.
Wild and cultivated plants represent very different habitats for pathogens, especially when cultivated plants bear qualitative resistance genes. Here, we investigated to what extent the population genetic structure of a plant pathogenic fungus collected on its wild host can be impacted by the deployment of resistant cultivars. We studied one of the main poplar diseases, poplar rust, caused by the fungus Melampsora larici‐populina. A thousand and fifty individuals sampled from several locations in France were phenotyped for their virulence profile (ability to infect or not the most deployed resistant cultivar ‘Beaupré’), and a subset of these was genotyped using 25 microsatellite markers. Bayesian assignment tests on genetic data clustered the 476 genotyped individuals into three genetic groups. Group 1 gathered most virulent individuals and displayed evidence for selection and drastic demographic changes resulting from breakdown of the poplar cultivar ‘Beaupré’. Group 2 comprised individuals corresponding to ancestral populations of M. larici‐populina naturally occurring in the native range. Group 3 displayed the hallmarks of strict asexual reproduction, which has never previously been demonstrated in this species. We discuss how poplar cultivation has influenced the spatial and genetic structure of this plant pathogenic fungus, and has led to the spread of virulence alleles (gene swamping) in M. larici‐populina populations evolving on the wild host.  相似文献   

16.
17.
The present study analyzes the fatty acid (FA) profile of lipids isolated from Varroa destructor Anderson & Trueman, a parasitic mite of the honey bee (Apis mellifera L.), uninfected and infected worker prepupae of the Carnolian subspecies Apis mellifera carnica Pollmann, and bee bread fed to the worker brood. Significant differences are observed in the FA profiles of lipids isolated from parasites, hosts and bee bread. Parasitism by V. destructor (henceforth, varroosis) induces visible changes in the lipid profile of worker prepupae. In infected prepupae, the percentage of total saturated FAs is lower and the percentage of unsaturated FAs is higher than in uninfected insects. These differences result from significant changes in the percentages of FAs that are most abundant in the evaluated groups (i.e. C16:0, C18:1 9c, C18:2n‐6 and C18:3n‐3 FAs). In mites and in uninfected and infected prepupae, the predominant FAs are oleic acid (41.07 ± 2.26%, 42.79 ± 1.21% and 45 ± 0.20%, respectively) and palmitic acid (22.62 ± 0.87%, 39.48 ± 0.43% and 36.84 ± 0.22%, respectively). Highly significant differences in FA composition are noted between bee bread and worker brood. The results suggest specific mechanisms of FA uptake, accumulation and metabolism in the food chain of this parasitic association, beginning from the food processed by nurse bees for larval feeding, through host organisms (worker brood) to V. destructor mites.  相似文献   

18.
19.
In a recent study we revealed that the parasitic angiosperm Arceuthobium americanum is comprised of three distinct genetic races, each associated with a different host in regions of allopatry. In order to assess the role of host identity and geographical isolation on race formation in A. americanum, we compared the genetic population structure of this parasite with that of its three principal hosts, Pinus banksiana, Pinus contorta var. latifolia and Pinus contorta var. murrayana. Despite the fact that A. americanum was divided into three genetic races, hosts were divided into only two genetic groups: (i) Pinus banksiana and hybrids, and (ii) P. contorta var. latifolia and var. murrayana. These findings suggest that factors such as geographical isolation and adaptation to different environmental conditions are important for race formation in the absence of host-driven selection pressures. To assess factors impacting population structure at the fine-scale, genetic and geographical distance matrices of host and parasite were compared within A. americanum races. The lack of a relationship between genetic and geographical distance matrices suggests that isolation-by-distance plays a negligible role at this level. The effect of geographical isolation may have been diminished because of the influence of factors such as random seed dispersal by animal vectors or adaptation to nongeographically patterned environmental conditions. Host-parasite interactions might also have impacted the fine-scale structure of A. americanum because the parasite and host were found to have similar patterns of gene flow.  相似文献   

20.
The role of breeding system and population bottlenecks in shaping the distribution of neutral genetic variation among populations inhabiting patchily distributed, ephemeral water bodies was examined for the hermaphroditic freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma guineensis. Levels of genetic variation at 11 microsatellite loci were assessed for 600 individuals sampled from 19 populations that span three ecological and climatic zones (ecozones) in Cameroon, West Africa. Significant heterozygote deficiencies and linkage disequilibria indicated very high selfing rates in these populations. Despite this and the large genetic differentiation detected between populations, high levels of genetic variation were harboured within these populations. The high level of gene flow inferred from assignment tests may be responsible for this pattern. Indeed, metapopulation dynamics, including high levels of gene flow as well as extinction/contraction and recolonization events, are invoked to account for the observed population structuring, which was not a consequence of isolation-by-distance. Because B. forskalii populations inhabiting the northern, Sahelian area are subject to more pronounced annual cycles of drought and flood than the southern equatorial ones, they were expected to be subject to population bottlenecks of increased frequency and severity and, therefore, show reduced genetic variability and elevated population differentiation. Contrary to predictions, the populations inhabiting the most northerly ecozone exhibited higher genetic diversity and lower genetic differentiation than those in the most southerly one, suggesting that elevated gene flow in this region is counteracting genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号